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ABSTRACT

In this paper, a canonical formalism has been developed for
the description of the negative mass instability (N.M.I.) and longi-
tudinal oscillations of relativistic beams. This formalism has been
applied to ascertain the stabilizing effect of betatron oscillations, and
to determine the dispersion relation governing counterstreaming ions
and relativistic electrons. The results show that only the spread in
P , the canonical angular momentum of the particles, contributes to
stability. The N.M.I. equation for two streams is the same as though
each were separately present; and the dispersion relation f or longi-
tudinal oscillations of beams in a magnetic field is given by the N.M.I
dispersion relation, and not by the dispersion relation for longitudinal
oscillations of collinear beams. Moreover, the dispersion relation for
longitudinal oscillations of thin collinear beams differs from the usual

equation by a non-trivial factor.
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NOTE
The equations in the four chapters are labelled by number,
e.g., eq. 2-34, the 34th equation in Chapter II.
The equations in the Appendices are labelled by letter, e.g.,
eq. D-12, the 12th equation in Appendix IV,

Within the chapter, eq. 2-34 is referred to simply as eq. 34.

Within the appendix, eq. D-12 is referred to simply as eq. 12.

The symbols used and some words are explained and defined

in the Definitions and Symbols Section (p.123 )
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CHAPTER I - INTRODUCTION

Sec. 1.1 - The Description of the N. M. I.

The N.M.I. causes azimuthal clumping of intense beams in any
device with a magnetic field of axial symmetry that provides radial and
axial focusing, e. g., synchrotron, betatron, and mirror machine
(e.g., DCX). (See Fig.1 .) In the unstable regime this clumping grows
so that eventually transverse space charge forces exceed the focusing
forces and part of the beam is lost. (A crude analogy is the loss of
water in a shallow circular trough, when waves are set up.) In the stable
regime, the clumps travel with the beam and move very slowly relative |
to it. Thus /{ equally spaced clumps in a beam moving at cyclotron
frequency é. » will give rise to a charge variation at one point of fre-
quency W = 26, .

A simple explanation of the cause of the instability is the following.
Consider an azimuthally uniform distribution of cold particles in a beam,
Making a small sinusoidal perturbation in the beam density effects a
sinusoidal electric potential, rotating with the beam. Those particles
ahead of the potential bump will be speeded up and those behind it will
be slowed down. Thus one would expect the bump to evanesce, However,
those particles which were speeded up move outward radially due to the
centrifugal force. The amount of radial motion depends on the magnetic
field shape. For weak focusing machines (0 « y </ ), the radial ex-
cursion is large enough to overcompensate the increase in linear veloc-

ity so that the angular velocity decreases. On the other hand, those
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particles that are slowed down in linear velocity, move inward radially
and thus speed up in angular velocity so that the net effect is that the
particles tend to move toward the angular position of the potential bump
and the perturbation grows. Since the angular acceleration is opposite
to the force, the effect is as though the particles have negative effect-
ive mass.

As the radial focusing increases in strength, the radial ex-
cursion becomes relatively smaller so that an increase in linear veloc-
ity causes an increase in angular velocity and the effective mass be-
comes positive. This is the situation, for example, in strong focusing
machines (below transition cnergy) where the N. M. I. will not occur.

Gravitational forces azc weak, in the above sense, 8o that
particles have an effective negative mass. Such a situation exists in
Saturn's rings. There, howaver, the forces between two particles are
attractive so that the negative mass prevents clumping and the ring
system is stable. This was first pointed out by MaxWell.(l)

The cause of the instability may also be seen by examining
normal synchrotron operation. During the acceleration cycle of a syn-
chrotron, an R. F. ficld is applied across a gap. If we assume that
the gap is so small that the time change of the gap field is negligible
while it is being traversed by the particle, then the energy gained by
the particle is dependent only on its phase relative to the R. F. field.
In this case if the R, F. peak gap potential is ¢V | then the potential
may be replaced by an equivalent, continuous rotating potential over

2
).()

the whole path of the particle given by '.f—*rrl{ ("’"'(9 "t The
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energy gained in one cycle of the particle is equal in both cases.
Analysi ., of the phase motion shows that there is a point of phase
stability near the peak of the rotating field. The beam particle den-
sity is therefore a maximum at the same point. If the magnetic field
is stationary then the stable point is at the peak. Suppose now that
there is no rotating external electric field but a rotating internal

field caused by © perturbations in the beam density. Since the

stable phase point is at the field maximum, the particle density at the
maximum will grow, which will make the field still stronger, resulting

in beam clumping.

Sec. 1.2 - Background

This work was motivated by the conjecture that the N.M.I. is
the effect which most severely limits the maximum currents allowed
in a plasma betatron. For a plasma at an initial temperature of 3 e.v.
the linearized N. M, I, theory predicts stability at a neutral beam den-
sity where the current is only £ /_‘5 amp of relativistic electrons (see
eq. 2-47),

The plasma betatron is a device which accelerates a neutralized
beam of positive ions and electrons so that the space charge limit-
ations of ordinary machines do not apply. Examination of the equi-
librium conditions, by including the effect of the self-magnetic field
as done by Schmidt(,3) gives the limit V?ﬂ. < €, , which permits 1000
amperes,

(4)
Instabilities were first discussed by Budker, the originator of

the scheme of the acceleration of a neutralized beam. Two of these
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instabilities, the two-stream longitudinal and the transverse (sinuous)
are also discussed by Finkelstein and Sturrocka)who find stability
criteria much less restrictive than required for the N.M.1.

Another instability which might Zeverely limit the maximum
beam current was noted by Rosenbluth. It arises when a beam of
particles passes through a background resistive plasma. Since in
principle, this effect may be eliminated in a plasma betatron by care-
ful design, we will not consider it further.

Harrison(7)has pointed out that the two-stream longitudinal
instability severely restricts the maximum currents in a non-relativ-
istic electron beam. As already pointed out in a paper by Finkelstein
and Sturrocka) hereafter to be referred to as F-5,for relativistic
beams, Y < 3000 for stability, however for slower beams as shown
by Harrison the stability requirement is % >m » for cold electron
and jon beams. (V. is the lineal stream density multiplied by the
classical electron radius; V is the electron stream velocity, the ion
velocities being small; 9 is a logarithmic geometrical factor of order
unity.) The theory of the N. M.I. shows that even if this inequality is
satisfied each beam must be hot enough so that ~AC—V‘ > -%‘-g, %f; >J§
(Since {I'»l for usual n values, and 9 is alog term, this
inequality is independent of the device considered.) We see therefore
that theaN. M.I1., discovered independently by Nielsen, Sessler and
Symon(, )and Kolomenskii and Lebedev,9 restricts the maximum cur-
rents in a plasma betatron more severely than the other effects.

Plasma betatrons have been built by Budker and Naumov(m)

(11)
and by workers at CERN with the result that maximum currents



were 10 amperes, much below the design value of these machines.

The limitation is possibly due to the N.M.I. A plasma betatron is
(12)
also under study at Stevens Institute of Technology.

This instability is of broader interest, because, as we shall

show, thin beams in mirror magnetic fields where < h </ , will also
be subject to it, e.g. in the DCX(13)machine, where it may be the i
cause of the observed frequencies, as also pointed out by Fowler.(1 )
The AstroanS) containing a beam in a mirror field may also be sub-
ject to the N. M. I, Samoilov(l6)and Seidl(l7) have observed particle

bunching in betatrons and attribute this to the N.M.I. However, suf-
ficiently detailed measurements have not been made to verify this
conjecture. These authors also suggest that the N.M.I. is the major

cause of capture of particles into stable orbits in betatrons.

Sec. 1.3 - Outline

We have derived the N.M.I. equations using a canonical
formalism and the relativistic Hamiltonian. This procedure allows
one to include additional effects easily. With the resultant dispersion
relations, we derive a necessary and sufficient criterion for stability ,
which is simple only for single humped distributions. The stability
criterion may be given explicitly for Maxwellian distributions, and is
similar to the result obtained for rectangular pulse distribution
functions by other authors(S), (9)and hence justifies the use of pulse
functions. Our dispersion relation differs somewhat from earlier re-

sults so that stable distributions exhibit damped oscillations. This

effect is shown explicitly for a resonance distribution function.
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Kolomenskii and Lebedev  have obtained similar stability criteria
for a resonance function but have not worked out the damped sit;lation.
This damping is mathematically analogous to Landau da.mping(1 ) in
infinite ‘plasmas. Our results exhibit no damping for pulse distribution
functions in agreement with the results of other authors.

Previous works of other authors have dealt with circulating
beams enclosed within conducting boundaries. This paper considers
unshielded beams so that every part of the beam sees every other part.
We find that for small wave numbers of the perturbation, in the rela-
tivistic domain, the beam will be stable even if it is cold. (If ’Ls":'

*—'; = {;%ﬂl is negative then there is stability, where Jg,z.z'_a 1= 1,8,
andj= § for typical cases.)

Next we consider the effect of betatron oscillations on the N.M. 1.
and treat separately the axial (z ) and radial (r) oscillations. We find
that these have a very slight effect on stability and therefore only the
spread of fs contributes to the stability. Our calculations also
show that the growth rate of the instability slows down as it approaches
the radial betatron oscillation frequency where the equations break down.

Finally we generalize our equations to find the dispersion re-
lation under the N.M., I. for two streams, counterstreaming ions and
relativistic electrons. We find that the stability criteria are almost
the same as though each beam were pPresent by itself. The difference
is that when h>$ and | » L:Tﬁ > &La » the electron modes are
stable, even for a cold electron beam. The ion modes, however, are

still unstable.
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Next it is shown that the equation for longitudinal oscillations

of collinear streams is valid for circular streams, only when 7_—'; «

-, which is not generally truec. (It is true only in strong-focusing
machines below transition.) The equation for longitudinal oscillations
may therefore be derived from the two-stream N,M.I. equations by
letting ,—_';'—7 0 . This equation, valid only for small V because
the N. M. I equations are restricted to small V , differs from the
F-S(S) longitudinal equation. Going back to the basic equations, an
equation for the longitudinal oscillations, valid for all V , is ob-
tained which gives stability for even higher currents than found in F-S,
To check the validity of our equation, the dispersion relation for two
infinitely wide beams is obtained from it, If the ion bcam is stationary
and cold, the dispersion rclation agrees with that found by Bludman
et al.(19) If we set the number of ions cqual to zcro, we find that the
resulting dispersion relations may be obtained by a Lorentz transform-
ation from the dispersion relations of both thin and infinite beams of
non-relativistic electrons. These results show that our modification
of the F-S cquation, which consists of a factor ] - (ﬂ)a, is cor-
rect. This ecquation is similar to eq. 32 (eq. 9 in the :.I:ridged trans-

. )
lation) of Budker, who has obtained the same stability criterion. (His

cquations neglect beam temperatures and the ion beam velocity.)

10
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CHAPTER II - ONE STREAM

Here we develop the dispersion relations for a single stream.
A constraint equation is found which reduces the Boltzman Equation to
a one-dimensional equation. Since the equation for the potential is then
given by an integral over one momentum variable, the resulting equa-
tions are formally similar to the one-dimensional system first studied
by L. D, Landau(w)and later also by BackuszO) These equations are
solved following Jackson(zu while the Nyquist diagram technique of
Pcnrose(ZZ) is used to obtain generalized stability criteria including
the stability criterion for a Maxwellian distribution. These equations
are then solved exactly for a resonance function and a pulse function.
Finally the Boltzman Equation is solved, non-relativistically, by in-
cluding the (z) axial bi:tutron oscillations and the (r) radial betatron os-

cillations separately.

Sec. 2.1 - The Constraint Equation

The basic equation for our system is the collisionless Boltzman

equation
.i\‘P : ?f + o {_&V + [ ﬁr'ﬁ, o, -?E_B]f* 2 ¥ 2,
ot 00 D/)o dr '3/;,. PE 2/

=0
If the coefficients c)‘, and ,5( arc obtained from a relativistic Hamiltonian
and ? describes particles with the same rest mass, then this equation
is relativistically correct. A brief discussion of the relativistic invariance
is given by Belyaev and Budker(.23) In the following way they show that

9”. is a Lorentz invariant scalar. The particle flux and density four-
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vector, jk is obtained from /Fk d"f = jk » an invariant expres-
sion. In terms of the four-velocity Y, » B, = Fllk and F (¥, , #) =

‘t‘Y}i X | /.0,‘ ) § (W:_g;:)’_ ~m,c). The § function arises because
F describes particles with the Same rest mass, Y is the distribution
function of eq. 1, so that /}Z’g/’,g = h , the number of particles per
unit volume. Since the & function is written in an invariant way, Y/
must be invariant because F is invariant. (There is an error in the ex-
Pression for F and H in theijr paper. (23)The factor in F should be - )
not (¢ , and H should be multiplied by ¢ .) Because of the § function,
}P is a function of only seven variables, the four coordinates and the
three momenta. Eq. 1 may be derived from their invariant Boltzman
equation by integrating it over df, to eliminate the § function. Thus
eq. 1is relativistically correct.

Our procedure is to simplify the expressions for the coefficients
of eq. 1 and then solve the Boltzman equation by a perturbation Procedure.
This means writing ? = }T{ + f,’ » wWhere gf« }[{ in some operational
sense and }[f describes the unperturbed configuration which is time in-
dependent. If ‘:[,/ » initially small, has an exponentially increasing
time dependence then the system is unstable.

The unperturbed system consists of one specie of particles ro-
tating about an axially symmetric magnetic field. (See Fig. 1 ). The
B, field falls off slowly with radius near I, according to B, = B, (%)h

where 0¢ ne¢| to provide focusing, as explained in Appendix I. The

Particles occupy a toroidal region of small cross section and form an

azimuthally uniform distrib ution,
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The equations for the transverse motion are derived in
Appendix I and are given by eqs. A-8, 9 and 10, which describe the
usual betatron oscillations. Note that m, the relativistic mass (¥m,,
as defined in Appendix I) is constant, since the energies of betatron
oscillation are constant. These equations for the transverse motion

are valid if

H k| ap | 2
or 22 r 22 s

are neglected relative to aﬂfiﬂ ) .‘3_:_5 in eqs. A-3a, 3c. (The
r

superscript zero refers to quantities due to the unperturbed beam.)
I-h (v 2 -
This requires that L« ' (_ l’) £ €, for the electron!)
) 2 2 C Mo
(+

or ion' ' stream. It is also required that A, A, and A be negligible.

In fact A, = A, = 0 because of the symmetry of the particle motion.
(3) 5
Finally, as Schmidt has pointed out, the self-field term, :ﬁ‘

causes a radial shift in equilibrium orbit which is negligible if vq , €
¢

’

in which case A"9 is also negligible.
The Schmidt criterion may be derived in the following manner.
Boz = 0 at the center of the current torus, i.e., near r = ro, z =0,

if the current is distributed uniformly over the cross section. The re-

Ao Ao =0 then gives A - - As From
or r or r

Appendix I we see that the radial motion of the particles is determined

lation B =

by a vector potential A, . The beam center is at the bottom of the well
defined by the total vector potential, the external plus the self-field.
See Fig. 2. The location of the bottom is given by the solution of

_a_ﬁo = ?_/_‘ﬁ + 3_/1_:) =0 or s . A% using B, = 0. To find
or  ar  ar e 0

13
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the value of Aue at the center of the beam, near r = r,, we use eqs. A-5b,

C-17 and C-20 to obtain As = &h ¥ % = vg, o€ Vo . By eq. A-2b,

" Fe 27 ¢
Vor - &40 - _‘L(A"*L ) . Substituting this value of Vs and
¢ Fhm,C -Vg A
solving for A}, gives Ao : '}//;3 . Byeq. A-4, -‘5\%‘-’- =
- T e
(1 -n) -'-—-—29- Aso . Thus using th:arequation for the location of the
o ~
A M .
bottom of the well s . ﬁ_g , we obtain finally -~ Y9, -———/LB--,;- =
or r ¥r 1+ vy,
- S . F,
(I-h) Pl Ay . Since VY9,«]|, and r = r,, this expression
I".,.‘\ ¥
reduces to
N
vgn E ‘(l-h) (_r_-_l_‘u)
¥ r,

The maximum of the R.H.S. of this equation is €, » which gives us
Schmidt's criterion. Note that the current loop moves radially inward
in the Betatron field, contrary to a free current loop which, as is well-
known, expands.

The unperturbed, zero-order azimuthally symmetric distribution
describes particles with a spread in Pe Values and a range of betatron
oscillation amplitudes,

The variables P, r-rg, and z are considered first-order
small. Quadratic terms in these quantities will be neglected. As a re-
sult of the perturbation which causes azimuthal fields, p, is no longer
constant for each particle but changes slowly with time (see eq. A-3b)
and, therefore, m will too. There will now be terms due to A'r, Alo
and 90', in the expression for f)z, and hence additional terms in eq.
A-9. A, remains zero because the motion is symmetric about

the z = 0 plane. A'r may also be neglected for thin beams because the

radial phase velocity due to the N.M.I. is always much slower than c.
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The terms JAs |, Q__ﬂ_é, LI Jd¢'  give the effect of the perturbed

ar 3 9r 7
transverse space charge. It appears plausible that under the conditions
that the zero order transverse space charge effects may be neglected
relative to the focusing betatron field, that the perturbed terms may
also be neglected. It is possible in fact to show this non-relativistically
with the formalism of Sec. 2.5. This suggests that if Vg 4 ¢, these

e

terms may be neglected.

With the above assumptions, we obtain from eqs. A-8 and A-9

that p, = mz and pz = - b2 . Since m must be constant for particle
m
motion in a static magnetic field, these equations give mz = - b3 or
[23)

p‘.,‘2 + bzl = constant. This means that the energy of the z betatron oscil-
lations is constant. Thus if T is a function of z and p, only through

pz2 + bz2, i.e., Y= Y(r, P06 Pty pz2 + bzz), the two z terms
in the Boltzman equation add to zero as may be verified by substitution,
to first order

The coefficients of the other terms do not contain z or p,

so that we may integrate the Boltzman equation over di‘dﬂ , and writing

’\If"" /Yd-}clﬂ obtain,

RANICY SRR SPIACD QPP b QRPN R
Jr

at 20 3 7o > pr

We have thereby reduced the equation to a two-dimensional one.

Next we deduce a constraint equation linking r and p, , through
which the problem is reduced to only one dimension. The equation of
motion in the r direction is, by eq. A-10 (again neglecting the transverse

space charge forces and A'.r),

dmi = -(-u) 9_(— Fo v & Ag)
I C

dt or 2-4a
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For m and P, constant this equation may be rewritten as

Fa =6 p, - w*r-r) 2-4b
mr,

LIX4

lates about an equilibrium position e =Ty + T-'T\ E%‘ Po with
el 0

a frequency «, . This equilibrium position will vary with p,, but

where w,= JT75 ¢, = V-h (-e 30) . This shows that a particle oscil-

the frequency «, remains constant to lowest order. This may be seen
more clearly by examining the plot of Ap in Fig. 2, Eq. 4a gives the
motion of a particle ip the potential well ;" - ‘ﬁAa . Clearly the
minimum of the total well is shifted according to the value of Po -

(This is seen by adding the curve (-FC fo )-'—,'- to Ap in Fig. 2),

Under the influence of azimuthally varying electric fields, Py Will
change, as appears from eq. A-2b. These fields will occur as a result
of the N.M.I. Suppose now that the Py variation of a particle is very
slow. Then if the particle is initially at the bottom of the total well, it
will stay very near the bottom and follow the shifts in p, . This may be
shown easily by writing the steady state solution of eq. 4 with the initial
condition that the particle is resting at the bottom of the well, i.e.,
Fr=r=0 at t = 0 and the assumption that B,= Pcoz i, t . This

solution is

For. = 0. P Caw,t - &) et 2-5
mre w2 -2 w?
If now the P, oscillation is so slow that Wyt » then the second

term on the R. H.S. of eq. 5 may be neglected and we find

r-r, = -_' < Po
Thoesr 2-6
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i.e., the particle follows the bottom of the well. This may also be
seen from eq. 4b as r is now much less than either term on the R.H.S.
of the equation. Setting r = 0 gives the same eq. 6. This is the de~
sired constraint equation. This means that if the particle is initially
at the bottom of the well, with nearly zero amplitude betatron oscil-
lations, then if the bottom of the well shifts slowly enough, the particle
will follow the bottom without any fast betatron oscillations being ex-
w, A

cited. Their amplitude by eq. 5 is only the amplitude of the

w3
slow motion.

Due to the P, changes and the azimuthal field, the relativistic
mass m will change with time, so that strictly a term -:71-1? should
be included on the L.H.S. of eq. 3. This term is however of order p;
and is neglected as we keep only terms ~p,.

The restriction «,?« &, , naturally places restrictions on
the solution of the Boltzman equation describing the N. M.I. which
restrictions we now derive. We shall assume below that 159“‘ e" ze-"nf
The particles travel at an average velocity é., so that 9=é°f. Hence,
the time variation of p, for a particle, is gy ~ e‘(zé‘ At and the

frequency of oscillation of p, of a particle, is 16, -/L . Thus the

above condition, that the constraint equation be valid is

n- 16,

e st et

< |
= . 2t

or

which may be verified to be consistent with the dispersion relation

obtained below.
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We shall now show how the constraint equation may be.used to
reduce the Boltzman equation by one more dimension. Consider the

quantity

c
X= r=re = rI-Tr., * ' Pe
/= h é’B.,ro

which measures the deviation of the particle from the bottom of the
well. We shall make a transformation of Yf, from the variables

o, t, Py Py rtof, t, p,, pp, x. Keeping in mind the fact that

X = {(rl ﬁ) we may write the last three terms of the Boltzman equation,

eq. 3, as

BT U RS Y T AN e
af& o pr ar 3/"0 bfeax 21” %

! ‘
where Y: = Y: (6, t, p» B, x). We may now substitute for the co-
efficients f)r and r. Neglecting again A’r , we obtain r = fr from
[
eq. A-2a and /Jr= -mu’X from eq. 4a. Thus we get for the last two

terms of the Boltzman equation

AN ASUNINE } Y 2

f Pr 57 o pr Ao JX

Q-

U '
If Y; = YJ; (6, t, Py p'_2 + m2 w,,2 xz), eq. 8 equals zero so that the
two r terms now give zero in the Boltzman equation which then be-

comes



J—s]

_a_gr»" + 6 _B__‘.l_’,' + 7‘30(9 V', N Q'Y’x')'—‘- o
ot d6 dpe JFre X
We shall now integrate this equation over dx dp. . Thus the first
term gives _Q__lz‘” , Where Y“:/ j:‘;()(l//; In the next term
we must be moar:-careful as H-= f(r, fo) . We will assume that the
functional dependence of Y’;’ on g+m’ A;’)(a is sharply peaked
about g +m’y’x*= 0 . The derivation of the constraint equa-
tion shows that if P and x are zero initially that they remain very

/
small. Thus 'Y: can be a sharply peaked function of these vari-

ables. Setting x = 0, now means that 6 ='F(¢’p) only because the
constraint equation is valid and r is a function of p, . Thus integrating

the second term we obtain

, oY

° 3%

where 8=F(ﬂ,) now. The fourth term is odd in x, because
n oY, . dx . Y A
ots X dfe D (pPrmiwx) X

The first factor is a constant. The second is even in x, while the third

is odd. Thus the integral over dx gives zero. This leaves only
¢
i 2%
% fo

Integrating this term now over dx dp, now gives
- N
g 0¥
3 Po

where again we must use the constraint equation to eliminate any r

dependence in p, .
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The validity of the reduction of the thyee-dimensional Boltzman
equation to a one-dimensional equation is justified more rigorously in
Sec. 2.5, where the complete solution of the Boltzman equation is per-
formed.

If the magnetic field does not satisfy the Betatron 2-1 condition,
but still satisfies © ¢ nw </ , then all the results presented in this
paper are still correct, because as shown in Appendix II, in such a
system

Ah:ﬁ~'£’43

r [4

o _

£
r c
where A, represents the external field (i.e., mirror fields or synchro-
tron fields) and FPy= py -4, . (f, corresponds to an equilibrium orbit
at ro.) Therefore if Py replaces p, in all the equations of this paper,
they will still be correct because all the equations of Appendix I are

the same.

Sec., 2.2 - The Basic Equations

The Boltzman equation for the system is now one-dimensional.

Setting 'Y”= ?l' , we have

._3_‘/'+6'_'()_.‘_/’4/"0_9_£:'0 2-9
ot 206 2 fo
where the number of particles in an element d6 d;’o is given by
dv= ‘/’o’aﬁpfo 2-10

while the coefficients € and f)e are defined by eqs. A-2b and A-3b,

é;_'_(‘_l’g-ﬁAo) 2-11

4 ot r C
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Eqs. 9, 11 and 12 are still too complicated to be solved exactly. We
shall, instead, use a perturbation expansion, ‘f’= '7’1: + ‘/{ where
¥, describes the time independent, azimuthally uniform distribution,
while ¥ , contains the 6 andt dependence, and is a small quant-
ity compared to % This is consistent with our previous approxi-
mations. Thus _?i‘{, ) 223: O , while 150 ~ ,ﬁl , by eq. 12.
ot 206

Thus to terms of lowest order, the Boltzman equation now

becomes

<

al +éa‘k+ faa‘k:O 2-13

t P 3 fo

This is called the linearized equation because all terms are linear in

has been dropped as it is of second

‘k . Note that f'o oY
9 Po

order in ¥ . The two first terms in eq. 12 may also be dropped

as they are of higher order than the last two. More particularly,

A, = 0 because the motion in the z direction is symmetric so that

I, = 0. The first term may be neglected because by the constraint

equation, eq. 6, r~ f’o » while A, ~ ‘/’, , 80 that this term is second

orderin ¥, . The coefficients & and I.’a may now be written more

explicitly, They are

&= ' (1’19 3y .A;]) 214

¥ mr r c
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where
[} _ ] ¥ 1
e I= (r .)J ) h«.“c"‘(—é’ -{—[ASJMJ) =L
4 S . eV, 9As _ e ¢’ 2-15
N R > 76

Since 9 multiplies '«P, , in eq. 13, Alo gives a second order
term and is neglected, The rest of 6 is a given function of p, and
r, and through the constraint equation, I = ‘F{}’,) , is a function of p,
only. (AB is defined by eq. A-4 where now z = 0.) Since p, is small,
6 may be expanded as a linear function of p, as detailed in

Appendix IV, The result is

é=é°'k7’o k= ! (_'__-') 2-16

) Fmr3li1-n #°

This gives one coefficient of the linearized Boltzman equation,
eq. 13. The other coefficient is p, . We desire its explicit depend-
ence on p, and ¥, also. It now proves more convenient to use Fourier

and Laplace transforms asdefined by the expressions

Y 10 o5 am -ilovint (Y (0¢) A
= / d‘f/ de € . &l
j’*’om 0 £ Pe (9,-{)
which imply the reciprocal relations
e -int (Yv)
V(e t)( 1((”2 S o g 2-18
0 - n
po(01) ) e Fo

W
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where the contour W is chosen in the upper half-plane parallel to the
real /1 -axis above any poles in ‘Km , or 156”" . See Fig. 3 .

To find p, we consider first ¢ , whose transform is given as a

function of ¥ by eq. C-20

9= e, [

and is valid only in the beam, and when the wave length of the azimuthal

perturbation is much larger than the beam width. Since Y= % +¢

.e

and ¥ gives rise to an azimuthally symmetric ¢ , 9‘/’: PAd

=F |
and by eq. 19

e(_a_‘/’)'" . e%q, ’641)7" d po 2-20
20 re /120
Next we examine the expression for Ay . From eq. A-5

Vo coa(0-0) P (r,0) dr rdo
< Jr-ry

N
°
i

2-21

n

e/fﬁ E’_‘i(_o-_o_l_)_t‘b(o,foo)d@dfo

4 |r-r

because the component of—f along Xo isIcos (6-6" ). This expression
for A, will be substituted into eq. 15 for p, and hence must be evalu-
ated to first \order in ¥ . Higher order terms will be dropped.

We need first an explicit expression for vy = {(7/,,) , valid to first

order in ¥ , where Vo= 6 . For r, the constraint eq. 6 gives,

r-re = % po 2-22
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In the expansion of 6 in Appendix IV, some changes must be made
as we desire @ to first order. We now include A’a , 8o that the
expansion will have .17__’9 - _f_ 4; as a factor. Also we will expand the
r dependence separately to lowest order inr - rg and then substitute
eq. 22. Thus using eq. 14 instead of eq. D-1 and D-3 in Appendix IV
we obtain

e — R Y 0. (%75

and to first order terms,

Vo= 16 = (ro "%7’9) [Qn + h,'rap (71,, —r,,ﬁA,,)- f_.,(o(,fo)]
x I 6, 4__'____(1’, —rog,q,’) 2-23
h,,r.-')" C

This term together with VRN AR ‘/j , must be inserted in eq. 21
Keeping only terms first order in ‘/’, , we obtain from eqgs. 21 and

23
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C b, o € 4 jr-rel

The & dependence of the bracket is only in ¥ and A' as A' ~ ¥ .
The results of Appendix III, in particular eq. C-20, now gives

Aot = "--f-’—’ﬂ(f 'fi:“vm g B

re | N macslr . cg? 2-25
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The ¥ intecgration may be easily performed. Since ¥ is normalized
to N on the field & and p, and is constant {rom ¢ =0 to2m, /‘7‘2 J,’e
= M where N is the total number of particles. Thus transposing and

am
dividing

. A i 1
A 1 ¢d (z__z.__ (ﬁﬁ)’a,-o 2-26
Ne| 1 +vy o ro J\e  emitn (30
-7

Substituting 20, 23 and 26 into eq. 15 now gives,

.7“7 =efVe , Qo ﬁ_‘A.L : Vo y Po (94/,”’0‘_;
SR e

¢ cwmain)r, 1tvg)le  cnatrn
=
2-27
2 ‘ n
- e__J.( ’L‘}’,) J ,79
ro o0

As we will show, the p, terms in eq. 25 may be neglected.

Eq. 27 is then proportional to

~
~ - a

3 () e

= ¢

(where Stj : a-j >0 and Y9« | from the Schmidt criterion for
/

_te

outside
Chplr

the neglect of the zero-order self-field.) The term
the integral is negligible if Po < Fincr or Av. « f‘; :
while for the positive specie 4V, « ¢ is sufficient, if the ions are
non-relativistic. Now consider the p, term under the integral. By

eq. 31, ‘/’, consists of two parts. If the part proportional to R (7),

(eqs. 30 and 31), is sufficiently smooth and involves only small p, ,

sothat % « }m._cy ( Yo €4 by, Ty for the ions) this part may be



neglected. Using the other part of ‘vl’, , and the identity of eq. 3-32,

-
p, may be taken out of the integral and equals g % . Thus sub-
stituting for 'k’ from eq. 16, if o - L\« ;_Lhé this term may be
neglected. For the positive specie, the criteria e, - -“z'l & /—_h; %

is obtained, which is well satisfied, because the constraint equation
must be valid and hence eq. 7 must be satisfied.

Thus eq. 27 becomes

¢ n

_ 3 n

Po = -9 9"’1) 01790) 2-28

AP 20 o

9 0 —'- _ V"(S’ﬂ)

F a 3
4 ¢ c" g

This equation together with egs. 13 and 16 are completely equivalent to
(18)
the plasma system first solved correctly by L. D. Landau.

Sec. 2.3 - The Dispersion Relation

We solve the equations using Fourier and Laplace transforms
(21)
following J. D. Jackson's notation and method. We multiply eq. 13
am o -i(le-a1)
by /o de /0(* e to obtain after integrating by parts,
L]

1o+ Nt|w

- Z(n-'zb)[d/,(qf)em"'MJM*
2-29

o

/Wdo [‘f’ (6,t)e

]

%
9 o

+

L Sileeint
//%e R Yo dt = O

On the assumption that /2 has a positive imaginary part, the first

term evaluated at t =oo vanishes and the rest is =R (]) where

R(1)= [T e o,1m0) do 2-30
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i. e., the Fourier transform of the initial displacement. With the defin-
itions of the Fourier transforms as given by eqs. 17 and 18, eq. 29 now

gives the result

4% = (R0 -

2% o) L 2-31
3 po i(16 - 1)

n
From eq. 17, by integrating by parts, (_a_ﬁ) =il ‘f’";;nd thus eq. 28 becomes
20

fom= _eaj (27)/%,)/1 df’o 2-32

—

2
Fe )’,

Inserting eq. 31into eq. 32, now gives

sre g (2% AP RO
o r,"‘ ) e ‘{f’o 2-33
g - A1
2

6 -
Since f);n is independent of P, : Wecan solve eq. 33 for i);n ,

eq R (1) /
et 1A e gp(z,n)
[/

2-34

Lil

_ e’() 8% o3
I T, ),a 2 fo Jf’o H( Z)

5- 2
Z

where d; and H are the numerator and denominator of eq. 34 respect-
ively. The inverse p; , which gives the time behavior of p‘: is ob-

tained from eq. 30 and is, using eq. 34
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”ool = /'v e-.’fn‘o(ﬂ o4

{!

/ e-('Jl‘fJn é—(?,ﬂ) 2-35
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Since the curve W may be closed in the lower half-plane of /1 (see

Fig.3 ), we may evaluate the integral using residues, and obtain

St e arix T pu [ £

" i 2-36
& (2) n2=9,,

where the sum is over the poles of the term in brackets. If the initial

perturbation is sufficiently smooth, then é(?,n), will not contribute
any poles and the poles will occur only for the zeros of the denominator.
If the poles have a positive imaginary part, then 150? g e«t and

the solution is unstable. Since the above function # ';—7) is defined
only for /1 with positive imaginary part as appears from eq. 29, we
must find the analytic continuation of H(:’.?.Z) in the integrand of eq. 35
in order to find the residues. To find H(.le) explicitly we must insert
the value of 9 from eq. 16. We then see that H(..Zﬂ—) is not continuous
across the real axis (viewed as a function in the complex 2 plane),

because

' , s : tor i d [(9 -/aflo)-u]
X - P 2T . e g
_f;’ (6 Iepa) =2 R epe) 2037

—u e
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The § function gives the discontinuity. This shows that H, defined by

eq. 34, is discontinuous across the real axis with a jump equal to

AH = f/(izzwuze) -H(él:u%é)

= -ami €39 2% (—.@454 2-38
?

kr.,.}‘,“ bf@ _—72-_—— Qr9 O‘F ()bo

where we have used the J function properties J(x) = j(-r)l J’(ax) = f(x)and
a
recalled that the integration variable in His p, . Since the analytic

continuation of H must be continuous, we add AH to H defined by
eq. 34 to get the form of this function valid in the lower half-plane. The

dispersion relations are now given by setting H = 0. Thus
] 24,
N _ = - € _
HE)=o = | - 2L 3ps  up, >0

2 9".‘%."~k7’9

2-39

Y, 2
2 ° - o,
O=/-i—‘i 2P dpy _am: e’ B'ﬂ( 1}: ) [mnco
Fo &2 P RTo v 3 py

2
In eq. 39 it has been assumed that 7>0 . If ]1¢0 then it may be

seen that the first equation is unchanged, but that in the second there

is a plus sign in front of the 2wi in the third term on the right hand

side.

Sec. 2.4 - Stability Criteria and Dispersion Relation Solutions

In this section we will summarize some results obtained by in-

vestigating the solution of the dispersion relations. If one desires to
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know only stability criteria, i.e., the condition that /2 in eq. 18 has

a negative imaginary part, so that the corresponding Fourier compon-

ent is exponentially damped, then it is unnecessary to solve the dis~
persion relations completely., By means of the Nyquist diagram as
elaborated by Penrose(ZZ)and Ja.ckson,(21 it is possible to answer the
stability question by only evaluating certain integrals. As shown in
Appendix V, the number of integrals equals the number of maximum

and minimum of the distribution function. For a zero-order dis-

tribution function with one maximum, the stability criterion, from

(87)" > (a |iq_r ,,,.(ro)i 2-40
yy e

Appendix V is

where
LR L N G AR A 2-41
S v B &
(ar) v lo, = Po
and ‘7‘;" » P, are the values at the maximum. Since 3‘/«':) = o the
’ 9pIp,

integral is not singular.

For a Maxwellian distribution

2y
Tyl o

v o
5‘: J_TTAJ“I?G

) 2-42
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we find from Appendix V, that 4p=y1 4, . This together with eq. 40

gives the stability criterion.
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For a resonance distribution
U A !
Y, = = [L —— 2-43
amw L p? 4 Al

it is possible to solve the set of equations 39 exactly. The details are

in Appendix VI, The result is

ﬁ -9, = - ok A, 2 WV9r .cr, 2-44
4 s mor,? Iy ot

When | is negative then ( —> -. . The criterion for stability is simi-

lar to that of the Maxwellian distribution. The physical meaning of the
stability criterion is the following. For a cold beam there is instability
if the particles have a negative effective mass. This means if J’j"’ o >0
Suppose then that this is true. Then the growth rate of the instability

is given by the second term on the R.H.S. of eq. 44, The first term

on the R.H.S. gives the spread in angular velocity of the components

of the beam due to the spread in Py - The stability criterion means

now that if the spread in angular velocity is greater than the growth rate,
there will be stability, because the particles will have mixed themselves
during the characteristic growth time so that any perturbation will have
been washed out. This effect, where a finite temperature effects sta-
bility, occurs in many plasma physics problems including for example

the two-stream instability,



Eq. 44 also shows that when there is stability, the oscillations
are damped. This effect has not been previously noticed. The result,
eq. 44, without the damped solution is similar to the result of Kolo-
menskii and Lebedev.(g) This damping is due to the additional term in
the second of eq. 2-39, which in the case of one-dimensional plasmas
gives Landau. damping. e For a pulse function this term is zero,
because :—‘k’ = 0 , and therefore N-S(S) who used pulse functions
did not find this damping. We note that also in the case of one-dimen-
sional plasmas, the use of pulse functions leads to no dampipg and, in
fact gives the fluid equations for longitudinal oscillations, which are
known not to exhibit damping.

Finally we use the results of Appendix VI, which gives the sol-

ution of the dispersion relation for a pulse function of width A ,

L 6, = *_*__ \lﬁ’_ VI¥ (mec T, ) 2-45
4

‘}“n')ro; / -};—;“:Z'

This result is similar to that obtained by N-S(B) and Kolomenskii and
Lebedev.(9) If J’j“= ¢ , then the result is the same. This occurs
only when the beam is sufficiently thin, for then g gets large and

9 - o . Itis also true for large wave numbers for then §9 »o,

9

as is apparent from Appendix III. Since, by its definition in eq. 28,
,y; may be negative for low wave numbers, we see by eqs. 40, 44
and 45 that even for a cold beam there is no N.M,I. for weakly rela-

tivistic beams, As an example take the case ] = 3, 8q, =.1 , g

32
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(ng is obtained from eq. C-13) where

!

|
_;;:. J_-‘ 5
For J>7 , the three lowest wave numbers are stable. For 7=/ ,

§9, =1.3. In general, Jq, 1is afunction of 7 only. Our result
differs from the other authors because the beam is free and is not in a
vacuum tank which would shield parts of the beam from another. Another
contribution is that the validity of the constraint equation, requires, by
eq. 7, that the R.H.S5. of eq. 45 be much less than i?; 9'. . Since

the beam minor radius is much less than the major radius, eq. 6, the
constraint equation, implies that the first term in eq. 45 is much less

than g . Hence the second term must also be less than é.

If A =0, the instability growth rate is

2-46

N e, = o Vg o«
l ;’9‘ r F
and is valid only if this quantity is much less than é, .
From the above results, it is apparent that the criteria for sta-
bility are insensitive to the precise shape of the distribution. Thus
the pulse function distribution, which is simplest for computations,
gives adequately accurate results. We suspect that this holds true
for many calculations in plasma physics, where the utility of the pulse
function is insufficiently appreciate.
In systems of azimuthal symmetry, P, is a constant of the
motion. Thus neglecting any azimuthal instabilities, in a device, for

example, like the betatron, 4 #, in eq. 40, may be calculated from



Ap, of the particles at the time of injection, as it is constant. When

comes mostly from the spread of

the external field is zero p,= my, . Since r = r,, the spread in P,
7} The number of particles in

e X7y
arangedy is N, = (a7 kT P €@ **T | Hence the number of
.. 62
particles in a range d p, is V. = ! A e TmRTES
7 T-2RT mer?
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and comparing with eq. 42, A, = -\l.? m.kT r2 . Inserting into eq. 40,

we obtain

V¥ 9 ¢ (209007 Tew 2-47
",3-

where the electron temperature is expressed in electron volts. This

expression is also valid for the ions if V is replaced by V,’=ﬂ e?
awr, m.c*

Thus for a plasma at a given temperature, that is non-relativistic, the

number of ions or electrons that are stable, is the same. The quantity

oA is w= ;L - La and ‘g’ is given in Appendix IlI, For ions or
n-h '

non-relativistic electrons, some typical parameters are « =/, 9=4J,

T=x3ewv. . Eq. 47 then gives V< ).2 x/0°® which corresponds

to 1/50 amp of relativistic electrons.

Sec. 2.5 - The Effect of Betatron Oscillations

a. Axial (z) Oscillations

We shall next investigate the effect of allowing small amplitude
betatron oscillations in the zero-order distribution function. To sim-

plify the investigation we shall consider first the (z) oscillations and

~.



35

then the (r) oscillations. We will show that these oscillations ixave a
small effect and give a negligible contribution to stability,

This result differs from the investigations at MURA as reported
by Nielsen et al. (30) They define two quantities AEp and AE, ,
which give the spread in beam energy due to a spread in P, ( A Ep) and
a spread in betatron oscillation amplitude ( 4E;). These quantities
may be obtained by expansion of the Hamiltonian, eq. A-1, since these
energy spreads are small. The quantity A E’, ~4A and 4 Ei ~ .,/_.i:
Therefore the square root of the L.H.S. of eq. 40 is proportional
to AEp. { - KJ‘ =42 in eq. 40 to correspond with Nielsen's equations. )
Nielsen et al. now remark that the effect of the betatron oscillations
istoadda A E; term to the AEP term , so that both terms
contribute ‘equally to stability . This result is clearly different from
our result, given below, eq. 57.

By neglecting the Pr and r terms in the Boltzman equation,
eq. 1, following the constraint equation arguments given in Sec. 2.1,

that equation becomes after linearization,

L6, 4 0% AL AN 2.48
ot 26 d Po 2/ 22

This differs in a few respects from eq. 13. First, there are two new
terms in p, and z. Next ¥ now contains a factor describing particles
of small, but finite amplitude oscillations. In addition 6 is not

given by eq. 16, but now contains an additional term proportional to zz,

which results from retaining the z2 term from Ay in eq. D-1, Thus:
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We shall therefore be examining whether this additional variation in @

will add to the variation in 6 due to p, and hence add an additional
term for stability in eq. 39. We also need the value of the other co-
efficients in eq. 48, We have from eq. A-3b, for the non-relativistic

case

/;0 :- e 9¢ 2-50
20 ’

Keeping only first order terms in the coordinates we obtain p,

from eq. A-3c,

Pr= E% [mcve\h2 = - M Vol h 2 2-51
8 ¢ r? 5, .
From eq. A-2a
s = Pe 2-52
[ .

We shall also assume that

gy 1’ Yia (10 -21) 2-53
e

'

¢ ( Yia

This will give the same stability criteria as an initial value

problem, Eq. 48 now becomes

(a.+ be2)h, = a. ¢, aﬂf - aa? gix
ro r 2-54
vagp 2%n <o
D2

where the a's and b are constants independent of p,, z, and are
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We note that we are forming two separate expansions. One is
of ¥ in powers of ¢ . The other is in powers of z, Pg» P,. Thus
since we have kept only the first order terms in z and pg for the last
two terms in eq. 54 to be consistent we must do the same in the equa-

tion for '/2 . Thus since the zero-order Boltzman equation is

fo 2y 3 2% g 2-56
S P CRs
we have
-a,a.?_jf. toaz p, a(/"20
3)’; o2
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Note that ¥ is assumed independent of 6 andt and therefore the other

terms of eq. 56 are zero. The solution of eq. 56 is evidently:

= A -F(q_-, ?* +ay ,)1,’) where A may be a function 2-57
of pq .
We have now given eq. 44 with the z and P, dependence of all the terms
given explicitly., We also know that the solution of eq. 54 when the
terms approach zero is given by eq. 31 with R (2) = 0. This is suf-

ficient to solve the equation.
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We have ignored self-field terms in the expressions for }')z and
z that give first order terms in the perturbation amplitude in eq. 48,

has the self-field term A', whose neglect may be justified because the

N

use of ¥, obtained from the solution of eq. 54 gives zero for A!. This

Justifies the remark made above, that I, remains zero during the

N.M.I. The dominant self-ficld term in f)z is ifl » Which has the

same z dependence as the dominant external vector potential, and is
therefore ignored. This means that we neglect the transverse space
charge force.

The solution of eq. 54 proceeds in a straightforward way using
the method of characteristics. This solution is then inserted into eq.
C-2 to obtain the dispersion relation. These details are in Appendix VIII,
The solution obtained there for ’7"),, has been verified by insertion into
eq. 54 directly. The result is that ¥ in €q. 39a is multiplied by a

factor
| - .o0o0s 1*n p!
v

This is equivalent to multiplying v by this factor. Examination of eqs.
40, 44 or 45 shows that this has a negligible effect on stability. Thus
the inclusion of the axial betatron oscillations does improve stability,

but negligibly,

b. The Radial (r) Oscillations

Using the above procedure for evaluating the z betatron oscil-
lations we shall now evaluate the effect of the radial betatron oscillations

on the N.M.I. We shall, for simplicity ignore the z oscillations in our

treatment.
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The linearized Boltzman equation is then:

EL AN I A R L L A L AP R
ot 26 2pe or ar-

This is just like eq. 48, but now we have substituted r for z. We now
write the coefficients. 8 now has first order terms in r - Tro, 80 we

shall drop the second order terms. By eq. A-2b

.': U ,’o_e
6 m‘{}— £ 40)

Expanding and keeping only first order terms we obtain

é: é° + fo - é. (f"f'o) 2-59
e

1')‘ is given by eq. 50 and r,like eq. 52 is obtained from eq. A-2a, giving

rs= .’f:; - Again keeping only first order terms, we obtain 1.’1' from
eq. A-3a

. v a

P F Po - Y% (1-n)r-r.) 2-60

To simplify the calculations, we will define

Fr-re = r-r, -_0Po 2-61
m Vs (1-h)

Using eq. 61 to simplify eqs. 59 and 61, and using also the 6, t depend-

ence of eq. 53, the linearized Boltzman equation takes the form

(Q¢+bx)‘;"m - Q, (pm_% T a, X .a_il’.'}.
3'/)9 afr

t ay g, .____grm = 0

2-62
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where the a's and b are constants independent of r, Py and are

do = ~i(N1-16,+1kp) aa= L (o)
(e
b S ‘ZZéo a, = | ’
=~ A~ 2-63
a,= ecl X 5 'l

Since eq. 62 is a partial differential equation in r, p,., we may
consider p, = constant.in eq. 62 and hence dr = dx. k is defined in
eq. D-6. We note again that we are forming two expansions. One is
of ¥ in powers of ¢ , and the other is of p, , T, in powers of r - 1o,
P, » Py Thus since we have kept only first order terms in x, py for
the last two terms of eq. 62, to be consistent we must do the same in

the Boltzman equation for ¥ . Thus

‘fr ;)% + l" fl}kk, = 0
or Pr 6 2-64

-Qy X _(’)i‘i + ﬂ;/’r -3_1/2 =0
Bf’r oX

and

Y= A p -f(q, x?+a; /o,’) is a solution of eq. 64, 2-65

where Ap may only be a function of p, . Knowing the form of '4 given

in eq. 65, and the dispersion relation obtained when the r - r,, Pr terms

approach zero (as given by eq. 39), we can now proceed to solve eq. 62,
In writing eq. 62, the first-order, self-field terms /1,/, AA,A;" 9/)'

in r and p, which contribute to the first order Boltzman equation, have
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not been included. This may be justified in an approximate way.
Consider first r. By eq. A-2a, this contains a term A'r which is found
to lowest order by integrating ¥, , with a factor py . Looking at the
solution in Appendix IX found by neglecting Al , we find that Al is
indeed small, for the contribution to A'r is obtained only from a term
odd in p, and evenin x. The largest such term is the third term in
eq. I-13 or 14, and therefore A'r has a factor .{; , which allows
us to neglect it. This means that the perturbed vector potential is small
because the transverse currents that cause it are due to particles which
have slow transverse velocity relative to the angular velocity.

The other neglected self-field terms are in f)r . The largest of
these is a_f' . The major contribution to this term will be a term
proportional to x, which is the same spatial dependence as the external
field., Thus since the zero-order potential —:—?—o , is assumed negli-
gible, we shall also neglect this term. This means that we are neglect-
ing the transverse space charge forces.

The solution of eq. 62 is carried out in Appendix IX by the
method of characteristics. This solution has been verified by insertion
directly into eq. 62. The result is that % in eq. 39a is multiplied by

a factor

’ + _;7}_ V9C° 22
o ;-01 ("h)lé:\

As is more clearly seen from the solution I-22, this shows that the

effect of the radial betatron oscillations on stability is also quite small.



=)

42

== =)

The denominator is unity if eq.7 , the condition for the validity of the
— constraint equation, is true. This formula thus suggests that as the

I constraint equation is violated, the instability growth rate slows down,
Presumably because energy is also being put into the excitation of

radial betatron oscillations.

~F——N-—-’M-
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CHAPTER III - TWO STREAMS

In this chapter the dispersion relation for the N. M.I. of
counterstreaming positive ions and relativistic electrons is derived.
The same formalism is used to derive the dispersion relation of the
longitudinal oscillations of thin beams, which is different from that
derived by Finkelstein and Stur rocl(c?) To show the consistency of this
formalism, the dispersion relation for infinitely wide streams is also

(19)
found and agrees with that found by Bludman et al.

Sec. 3.1 - The Negative Mass Instability Equations

In order to find the dispersion relation for the N. M. 1. for two
streams, it is necessary to write the linearized Boltzman equation
for each stream. Using the same approximations as made above, in
Sec. 2.1and 2.2, where the single stream is discussed, we obtain
again eqs. 2-13 and 2-16. The restriction on V may, however, be
greatly relaxed if we assume a neutralized beam, for then there is
no zero order transverse electric potential. There will, though, be
a first order electric potential due to the fact that under the N.M. 1.
there is a transverse motion of unequal amount for each stream.
However this term, of first order in the perturbation amplitude (~"|:)
if inserted into the constraint equation through eq. A-3a, will give a
second order term in the one-dimensional Boltzman equation 2-13,
and hence is neglected,

The procedure is to solve the linearized Boltzman equation for

each stream and use this perturbed distribution function to obtain
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the perturbed potentials, A' and () '. These are inserted into the
equations for i’o for each beam. This results in two equations in
the two unknowns p, + and p, -. The requirement that there be a
solution implies that a certain determinant be zero, which gives the
dispersion relation.

In stead of solving the Maxwell-Boltzman equations of Sec. 2.2
as an initial value problem as done in Sec. 2.3, we will assume that
all the perturbed quantities vary as e‘l 46! - il . This will give
us the correct dispersion relation for the growing solutions and will

therefore be sufficient to find stability criteria. The Boltzman

equation, eq. 2-13 now gives after solving for ‘/’,ﬂ i

" 3%:
\,J'pn: - f:! afﬂ 3-1
} 1(6, -
N Z)

Next p, must be evaluated to first order. By eq. 2-15 we have

for particles of charge e and velocity Ve

Po= Vo 24 _ e D¢ 3-2

< 260 20

By eq. 2-25, we have for A} , neglecting p, as justified in Sec. 2.2,

?ﬁé: e§ 2 (.[‘ v, -2 '4; %*>J7’9
,c)e ro 26 c a3

-e9 9 [fny - e o ti-)d
Fo 06 c Fm_c?

3-3
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Since A}, is independent of p, and ¢ s normalized to a—':/r- , wWe
obtain
! ’ A
o _ _ o) OO (_‘Q ¢, - U W-)d,og
00 I+ vgm- +vyg 1, 936 /\c c 3-4
Y e
Also
29, /| 3-5
20

Since the & dependence of all the above quantities is ezza we obtain,
. . )
re:n._.tZQv, i /‘4"“«!/’0 —etf-ﬂf“/’"dﬂ,

c

ME AT

= ‘Lze /'*/i - v, v ‘k)cl‘fo
9 oc?
We have written . _ |+ l;l VY and dropped one term be-
e

3-6

a
cause .‘% « | . Also some subscripts have been omitted.
c

For p,_ we obtain,

fol = -zzsz-(eg i[%“‘d po- eV § d/.'"m)
B C o € ro

o C

1 {ec ‘mc[, - ec ‘/’.mol7 3-7
+ el (_r_o]_/\}’ o T’ol/ 79)

=i7%i (Lp ¢4 733 $ - g v ‘ﬁ)dﬂ

oc? 9 Tc

Inserting the values of Y+ and ¥ from eq. 1, we obtain from eqs. 6

and 7 after writing ¢- - % V- = |- _é: v* )
9

)..—
oc* > Tc?
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. eg|[ter 2ot (e f. 28
Por™ — ? po afe d g, 3-8
9,- N 6. -
L 2
and
. e:a 109' g%- - (’.’.6)’;0+§%’ ! 3-9
= __ 4 a 4
fo- e _Kr fO . fb /O
é - N O, '._J_I.
- z Z
Note that i’o: = p,14 is a constant independent of p, .
To simplify we rewrite eqs. 8 and 9 and define
0%,
Dy = €9 3pe dps 3-10
Mo .
6, - &L
- /
thus
Pos= To+ Dy '(’")f0~ D.
. , : 3-1
po -~ ~(1+€) po, D4 = Jo_ D.
or
PP#(’—D‘) i ’.’9—('“)0‘ =0
3-12

. . - ' D el O
o 1+e) Dy S O (’ — '>
tes ( ) ¥e
which are two homogeneous equations in two unknowns. For a non-

trivial solution the determinant of the coefficients of f:‘g‘ ) );o-

must vanish. Thus we obtain



o

47

|oet| = (1- 0s) (1= 45 0-) - (4¢P 0.0, = 0

v

or

I- 0 =1L b + |1 _(1+€)*|p, b =0 3-13
A /o
In order to examine this dispersion relation more definitely, the terms

in eq. 13 must be explicitly evaluated. By eq. 10,

.

- e? —=
D. = r9 375 Ay, 3-14
Q é _.R

= —

and by eq. D-2 and D-6, to first order in Py »

; A ! ! |
6. = 6,_+ (" *—;) to
i r? I 3.15
= 6,. ~kyp (k>o0)
Thus
; ay,.
1}_ = u d Fo J,”o
2 éc- = izz_ -k f’o
Using now a pulse function for y/ , e, %:{STNA Fo ¢ _:_ we obtain
0 o T4
3-16
p = Ny -k
- 27,: (9, j -ﬂ)a—(’?- A_>"‘ (See Appendix VII)
7T/ \GT

It is clear from eq. 15 that k_a_ s a measure of the velocity spread

in the beam. It is therefore more instructive to write
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. A ' 1\ - oA
Ae = ’l_A- = | A- - Zh GEOE
) 2 Arm.rr(1-n ] d¢mor? 3-17
or
rae.= sv 3-18
and obtain |
Ne'q ¢k
= e . _ . _ﬁ a
D- = n pmont (e -(0.-F) 3-19

€?y9u
CeF ()

where V; = ré‘,+ and v=_#¥ € ., The appropriate minus sub-
= = AQwr m_¢?

scripts should be appended to all the appropriate quantities. The gen-

eralization to D+ is obvious. Here +=; , and we need only append

the + subscripts. Thus, eq. 13 now becomes, after dividing through

by v= V.
m_ 2 1y clag
do _my BT
v Ny : - np
(%) -(v, ,—0_2_) (av-) (.\f_ roz)
3-20
vV M.y [ PO — ’]
AR AL TR (1+€) e 9
3
v )t -(v 'r.,-ﬂj[ v)? -l-f-“r'o_J}.)]
e o - e l
This equation is of fourth degree in {1 . Since this is true even with-

out the third term, that term will only modify the value of the roots re-
sulting from the first two terms but not change their number. The
third term may be neglected if V is small enough as appears from

the discussion below. A plot of this equation with the neglect of the
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third term on the R.H.S. of eq. 20 is drawn in Fig, 4, where

F ( Fo #) denotes the two terms on the R.H.S. of eq. 20. The
solid line denotes the rcgion of validity of the equation, i.e., for

r,,.-%l. near V., or V. . The dotted line would appear if the equa-

2

tion were taken seriously in the rest of the domain of
Under the assumptions used in deriving eq. 20, we will show
that it may be written as two separate equations. There are four
roots, of which one pair is near V; , and the other near -
These may be complex. Since the beams are in a magnetic field at
the same position and 6 = f_B holds, we have rp ¢ = m,. As
1 ¢

long as the ions are far from being relativistic, V. »uv, will hold.

Consider this case and the Pair of roots near V. Eq. 20 then be-

comes
L 2
e €2 +-9 | #5579 (I-Vu')
v (SR A @v.) - (v - p ro )32

Two more terms in this equation may be neglected. In de-
riving the constraint equation the magnetic field due to the beam cur-
rent was neglected. This means that V_‘J«, . Since Ym.c = m, Ve
this implies also Vg _:’L' «) , and hencre @ =/ and we can neglect
the third term on the R.H.S. of eq. 2l. Also since - *+ ¢ , the
relation # « [ implies that the first erm on the R.H.S. of eq. 21

is much less than -‘!/- and may also be neglected. Thus we obtain

(ro:‘_l1 v )t = av)r - v %. e, g 3-22

¢



—— p——

-

which is the same equation as the N. M. 1. dispersion relation for the

proton steam alone.

For the pair of roots of eq. 20 near V. , the equation may

be similarly reduced. Setting r, -? =~ V. in eq. 2C we obtain

L o= -k _C_:oL,tj . (ad-g | - §V:a -Vm.oug)
vV

Since vgg' «|, we may again neglect the first term on the R.H.S.
[

of eq. 23. The term in parenthesis may be simplified. If Fm »dm,
|

_’ = -3 - ~ -VA .
the"a»‘|+_‘ﬁi+‘“;’-g"” 9';»—.1
L s
Recalling now that o, :,T'; -/ we may write
A
R IO G Y I NEAY TR L YRSy
9 oc? n, }° 2 q me 1- h

so that eq. 23 becomes

3-24

o g [l_ - vz‘_-g_'-:)]
&

(av)* (v - &)

This equation differs from the N. M. I. equation for the relativistic

50

electrons alone by an additional term in the bracket, which contributes

to stability if »n >,z_' . If the bracket term is positive then there is
stability even if av. = 0.

Eqs. 22 and 24 must be consistent with the inequalities men-
tioned earlier which are required for the validity of these equations.
The validity of the constraint equation requires that Vi - To %

dT-n

&« —'——2—;—' Vi by eq. 2-7. By the definition of AV, in egs. 17 and 18,
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and the constraint eq. 2-6, because the beam is thin, one can show
easily that also AVy <& V3, These conditions are satisfied for the
negative stream if g« | and V 97‘:_'- « | . For the positive
stream using ¢m.¢ = m,V, , the restriction is stronger, Vqy #hn.
is required. d -
Summarizing, we find that the N.M.I. dispersion relation for

two streams, is given by eqs. 22 and 24 when

AV, «Vi Vg b Vo= vy i > |
4 ey s

3-25

are satisfied and the electrons are relativistic and the protons are
not. Eq. 22 is the same as the N.M.I. equation obtained if only the
protons were present, while the single stream N.M.I. equation for
the electrons is modified by the presence of the protons. If the elect-
rons are also non-relativistic then eq. 24 reduces to eq. 22 where the
+ subscripts are replaced by - and the validity of the equations is

a
givenby Az« vy, vyu b YT and vz, vy,
- - ’hr c?

Sec. 3.2 - Longitudinal Oscillations in Thin Beams

a) Restricted equation

The dispersion relation for longitudinal oscillations of thin
beams will be derived below as a limiting case of the two-stream
N.M.I. equations. Since the P terms in eqs. 6 and 7 were neglected,
this dispersion relation is valid only for cool beams, and for values
of . % near Vi or V. . This defect, equivalent to a limitation

on Vv , will be removed later in another derivation, where the P,

terms are retained,
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Longitudinal oscillations describe a motion in which the part-
icles move in a line along the average beam velocity without any

transverse motion. In the N.M.I. situation the transverse motion

is described by the constraint equation,§r=r-r, = —,7';-1:—‘199 and
¢
hence if 77"-’--’0 , dF = 0 and there is no transverse motion. This

means that an infinitely strong focusing field inhibits the transverse
motion. Therefore, one need only let ’—_'71 —* 0 in eq. 20 to obtain
the dispersion relation for longitudinal oscillations. Hence there
exists only one dispersion relation for beams in a magnetic field and
it depends on the value of J/-h . Since, in general I/-h is small
and finite, the examination of the instabilities of contra-streaming
particles(S)’ (7)using the thin beam longitudinal dispersion relation is
equivalent to assuming 7:'—" =0 » which is never legitimate. It is,
however, of interest to derive this relation because first, it will be
valid for accelerators with strong focusing, of such strength that it
may be considered infinite, and secondly, as will be shown later, this
relation is valid for thin linear beams, and has been derived else-
where(S)enabling the consistency of our treatment to be checked.

Let now ',T'; = 0 ineq. 20. Since only o+ (defined in eq. 17)

depends on )-k , one obtains the result that
- - ! S =
dy ® =1 ol e when yPank e 3-26

For this case too, we will show that eq. 20 reduces to eqs. 22 and 24,

Eq. 20 is valid when the inequalities



v_ ~r°£ =

K[t C) = ¢ K. C

J

\r.'.-rO%

C
73 3-27

hold, because then by the discussion at the end of Sec. 2.2, the Pp
terms under the integral sign of eq. 3, the expression for A"9 » may
be neglected. The neglect of the p, terms outside the integral sign,
which arise from | in eq. 2, implies that Ayj «c , when the ions are
non-relativistic and 4v:. « 7(3 , as also explained at the end of
Sec. 2.2. Applied to eq. 22, these inequalities require that yg'% «|
When applied to eq. 24, the inequality |
vq ¥ )',—9; +oav 7’:—':9}«/

results. We note further that to obtain eqs. 22 and 24 from eqs, 21
and 23, requires that V9, | , besides W)T"'"_: ¢« | . We shall
also assume that i, i;;,.,, and therefore ;' = [-Vg % . When
all these assumptions hold, eqs. 22 and 24 result where o4 are
given by eq. 26.

In deriving the constraint equation, it was requir ed that
Iu‘i -;-oiz_ll(‘ﬂ__;_;vt‘. Since here T‘h 0 » this inequality is always
true and poses no restriction on the parameters.

The longitudinal dispersion relation for thin beams may be
put into a more instructive form by combining eqs. 22 and 24 (with
the substitutions eq. 26) to give

—=c? c2g (1 42 vm.
| s 3 q(r!: mcj)

3
O B A IR

53



54

which is valid when v, « ¢ , Vi A -f-; ;_‘1“1« l, Vgi:-al and
[

vq ¥ L v aym. 3141 . We record again the definitions,
¥ My

[ N 7. 1
) A AV, = y. i Lo 27
AV- - 3}’5)!_". ! * am,r, r’ } ? g

For positive numerators, the two terms on the R. H.S. of this equation
are plotted in Fig. 5. The domain of validity is indicated schematically
by the solid line.

This equation differs from the one derived by Finkelstein and

(4)
Sturrock, by the inclusion of temperature terms, but more important
F
by the additional factor )l; - -V—:: ‘;3 + JV-:—’—"J » multiplying the second
C 2]

term on the R.H.S. of the equation. For small ] » and large v ,
the i‘l_ term can be large enough so that this factor is negative.
This ?Nill give an instability if AV,  is small enough, as is evident
from Fig. 4. Thus, in strong focusing machines below transition,
where the above approximations apply, the lowest wave numbers modes
will grow. This is a new instability,

For a linear geometry which F-S consider, d9 0 asis evi-

dent from Appendix III. Thus when dg=o , and V is very small,

this additional factor multiplying the second term on the R.H.S. of

eq. 28 becomes # - As VJh. |, the factor approaches 2, al-
hlo
though when V9h: = | , the equation breaks down. Thus for very
e

small y this difference means that the stable longitudinal oscil-

lations near V. are given by eq. 28 as

A L iCL‘lw*éi’] 3-29
1 ),J' C J
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The F-S equation has instead the factor ¢’ instead of ¥¥ . Also
their ¢= aﬂqj},, which differs slightly from our 4 given by
eqs. C-16 and C-13 because the geometries differ. We cannot com-
pare stability criteria with F-S because eq. 28 is only valid for
small V .
When eq. 28 is applied to the longitudinal oscillations of thin

linear streams that are very long, it is necessary also to replace

o L2 by % » where any beam distrubance is represented by

P Py € "l'o'?'“”, This is true from the following observations. If

.ITL:O v dr=p-r, =0 . Hence r=r, , aconstant, in eqgs.
A-2b and A-3b, and these equations correspond exactly to eqs. A-2c
and A-3c if the substitutions [6=2 ,1d=3 ,Ffo<pr, fo=p, A A
are made. Thus eq. 28 is valid either for devicegoof circ,;;lar sym-
metry with infinitely strong focusing or for linear beams without mag-

netic fiel ds.

b) Exact equation

Now we present a derivation of the longitudinal dispersion
relation where the P, terms of eq. 6, 7 are retained. (We shall also
assume that the beam is sufficiently thin, or that the geometry is
linear, so that §=9 and d9 =0 .) These two equations are now,

with the substitution of “Ptm from eq. 1,

fo."
; 3-30
a n 9":‘ 'hl 3?
S8 pe ) vy o\ B S S
Fo ¢ cmgloflc  cmg dgs ——— d s
60--"?— - '&
L
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f')“‘ 2100—_ l‘,?n 9'/"_
v, f’g | V. ?9, o- Qlfod 7 0. gf"_d
+(:_ ' c'mc)‘-’ (? +<M-r‘£)é- i Tn r a-n b
: 2
‘Poz_n |
' Yo g7 Lo
. eq_[w Po | _1{ . P htn 2. b
Ti (7 +=:rn.r'r.]-5 (C ch.r'r.) Qr’vd,f: : ﬂ;ﬁ’n"ﬁ
e - N p. -4t
B - L33

S R PN L

B — ————— o' ————
c cm rjoflc  cm,r, 4 __3/%17% | redp,
e

Since eqs. 30 and 31 are linear in P, the simplest assumption for f),m
(the unknown quantities) which gives a solution for eqs. 30 and 31, is
foy = @y + bype

If we substitute this into the equations, each equation is still
linear in p, . Let all the terms in eq. 30 and 31 be put on the left side
of the equality so that they equal zero. Since the coefficient of the
constant and the coefficient of p, must both be zero, each equation
now gives two equations. There are now four equations homogenous
in the four unknowns 4y, b, . By setting the determinant of the co-
efficient equal to zero, we obtain a 4 x 4 determinant which is the
exact dispersion relation,

There are two simple relations which allow the terms to be
simplified after the formidable number of terms of the determinant

are obtained. Note first that ét = Qt - k, Po . Then the integrals

which appear in the determinant are of the two forms
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oY, » oY
e y — d 4
s - -k 5 - 2 - |
6. 3 r 0. ] <
Let é,—izlsx to simplify the algebra. Then, since /3374'4, =0
oY Y
V — _ [y & L (Y d
Zordp = [Tar *z'(“ﬁ”
A-kyp A-kp
v A-p)a¥ 3-32
= [(r R ,,)af J}"
AT kp
PR
= ﬁ-f_'ii_dr
k Nk
gives the first desired relation,
To obtain the second relation, note first that
PR 4 - © N
Jrapdr - rt|T S rdp = -
because t/{, is zero at the limits * «© , and is normalized to :J_Av/r .
The second desired relation is now
a )Y a Y 7
P~ . [P iy 3t ¥
/ 3}’«.‘(’0 f 'b)'dr; + k/”'g—r— ! 4;7"’_
Y- kp Y- kp
(f’+ ,\_f —f))).ai 2 4
Rk 20ry k-am
Mo kp 4
3-33
I ra_"' vV
'7{/3" dp +la-;m'
A= ky

|
|
- )LJ' a#‘ -::1" + ol I
_(T)[_?‘f__ r ko 2Tl i

A ji'ip
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Where we have also used eq. 32. (/\z S é,_f - -'gl) .
Besides these two integral relations, the following relations
are needed too,
eag =la . ¥ o &7y, : — =Yq.
. . 5 —_
T (c»m.n) amk. re (c Phor) awm o $oo
tm_r?
and 3-34
9! M o Vmog1
Fo (Chor,)* amh,  me ~ o ,
Till now all the equations are equally valid for the N.M.I. For the
longitudinal oscillations one must let /+h =? © in eqs. 32, 33 and
34 so that
°‘+=‘I,°‘-=‘-'— and k,=_%+ = -1 ,k—=°(‘ = -
£ mer>  mep? Fmor P}

Many terms cancel so that the dispersion relation has finally the

simple form,

of, 3.
= 5p0 0+ 2 ap L1 3-35
To
St B [ Z N [CASE I
te Yo T 1) Pmor

If we use a pulse function for A » as given by eq. G-1, to evaluate

the integrals, eq. 35 becomes

]y e

— 3-36
a F - q 3
1% (‘C ~ Te .Zﬂ) -(AV,,.) (V‘_ s _{Z)—(AU,‘,_)
t
h o= 4. Ay = 8- dtl . —_—
where Ay, Am,r v, = m and there is now no restriction

on the ¥ values allowed in this equation, There are, however, re-

‘strictions on to if eq. 36 is valid as written, Since none of the
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protons are relativistic Y’ | and
! - I - ! ~ ,
= = 2
-V - m g h-fs - JEs )
-C_"‘ C c C hyrr
implies that if v; ««¢ that 2% « ¢ . Also if all of the elect-
b‘lro
rons are associated with one value of ¢ , then
a | . - !
r. = = G A4 1 /4 -
- : - —
I 1 S Y | ] /e
— ¢ crim.r, crim.r
c* C Ccrim.To

and it is required that 4 P- e ¢ These limitations apply also
FinTo

to §p in eq. 35, because the validity of eq. D-2 requires §, to be

small.

It is easily verified that in the domain where eqs. 28 and 36

are valid the equations give the same result. The term .—'a X V-:—‘9
Jv *
nr.\?
becomes | - (Z ) in eq. 36. The criterion for stability may now
3

be derived from eq. 36. As is evident from Fig. 5, one need only

find the minimum of the R.H.S. of eq. 36 and ensure that it is less

LAY
than 7’ . The result is that for #’m_»m. , Vqc dhi __'(* ‘")*

m- 4\ me

F-S give the criteria for stability, when #'m_»m, , as vge my

-

for their equation which does not contain the factors | - (.fl r.,)l .
lc

Thus eq. 36 gives an improvement in the stability criterion for

large ¢ .

Sec. 3.3 - Longitudinal Oscillations in Infinitely Wide Beams

With the formalism developed above, it is now a simple matter

to find the dispersion relation for the case of infinitely wide beams,

or beams with a perturbation wavelength '» or "‘;_71 , much less
4 3

than the beam width. Assume that the beams travel in the z direction,
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and that all quantities £,, ¢ A» havethe 2 t dependence

given by ¢ ¢ ke -t . From Maxwell's equations
v-E= 47g
or 3-37
(l(‘? Eh= 'f‘”‘ak
Also E= - vg -2 oA
<ot
and 3-38
£, = ik, @, + (LA,
[4
The gauge condition gives
: L =0
VAt — ¢
3-39

or
koA - D pp=0

Combining now eq. 37, 38 and 39, we obtain
- i {
P TR AT

Ie?
¢ hey €

Comparing this expression with eq. 5, we obtain

! T, e /(‘/’, -t ) dp, 340

th nf*

as the charge per unit volume. Thus in eq. 5 one may set

l

)
= 4. :
(j .”-/)Jk; /_ _i)l 3-41
k,c
From eq. 39,
. 4l - N
Aes =% = B2 g, 3-42




61
Using eq. 4, with the p, terms included and eqs. 32 and 33, eq. 42
is satisfied if the terms V9 | VMh.g=90 and the term ud in

Py
eq. 33 is set equal to zero. The dispersion relation is now obtained

from eq. 30 and 31, with the proviso that the three mentioned terms
are zero, and g is given by eq. 41. Fcllowing the same procedure as
outlined in the above section and solving the 4 x 4 determinant, eq. 35

is again obtained for the dispersion relation. Using the value of g

a
given in eq. 41, the factor ) - ('!; r.) is now cancelled and we obtain
C
'3 A %
Y LR fo 2 0(7’9

yme 3 fo o Pe
|= - ‘ + 3-43

Wf‘k‘\ athllg - 4 po 0 -, Po

o ! hel? - l o}
[
% is now normalized to 1, on the field P, » Since the 3%- factor
. v -

has been factored out. Since 2w TP = h = density of particles

in the toroidal geometry, eq. 43 can also apply to a linear geometry,

where 'n’ is the density. Also one may write d”" = Jﬂ , and normal-
I

L]

. !
ize ¥  tolon the field P, so that each integral becomes

2¥, .d’

I - 3 fa P
(V - '—o ﬂ.) + ﬁ
1) M
where M, =m, , M.=pm. Making now a final change of variable
and letting £ - v, , and normalizing ¥  tol on the field V, ,
M
and letting  r, ., ! , eq. 43 becomes
1 )
24, 2% 4
S o O v
Ry = Wil By i N I L 3-44
fvy - LY+ v VA I VIR R v
( + h? ) [ ( —k—q\ ES
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where Wy, = %7n. e’ and is valid when P, Em,cr dp ckmer,
My
Note that the actual velocity of a particle V' is given by V, = Ve tV,

If the positive beam is at zero temperature and moving with
3
zero velocity, then the first integral in eq. 44 reduces to ke

(18) n*
eq. 44 is identical to a result of Bludman, et al. as shown in

and

Appendix X,

The reason for the additional factor [—(—;l_"v)lE# that appears
C N
in eq. 35 for thin beams, but not for infinite beams, as in eq. 44, may
now be noted. It arises because the force between two small elements

Jlr,

of a thin tube, far apart, moving with velocity » is decreased by

the factor ¥, , because the electric ficld is decreased by this
amount. The decrease arises because the force is like that between
two small charges and is ~ d—" . The longitudinal electric field is

invariant, hence the field is obtained by writing £ = » where d

e

o?

is measured in the rest system of the charges. Since in the lab system
. . dl da

this distance is observed contracted, i.e., £_ = teb » We obtain

ar
F= - The wavelength of the perturbation A= ;_" , cor-

—
ﬁ:‘dfab
responds to o(,.,, - The forces and the electric fields are the same

whether there are actual moving charge clumps or a nearly stationary
charge fluid where the clumps appear to move due to the pPhase velocity
of the disturbance because the charge density, only, appears in
Maxwell's equations. Thus the factor )j,a, appears for the thin
beam. It is also possible to show frc;m the formalism of eqs. 30 and
31 and the equations following, using €= - v —c—'j—: that the longi-
tudinal field does in fact have this Zr factor for the thin beam

case,
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In the infinitely wide bcam situation, the clements are two
plane sheets, the electric field is £ = 210", and does not depend
on [, , nor does the force, so that the factor #,, docs not

appear.

If only one beam is present, then it is possible to check our
s nra*
additional factor |- -—l-‘-)

from a stationary 'beam' to a moving one. To simplify the algebra,

, by making a Lorentz transformation

the beam is assumed cold. We shall assume the ion beam to be

: e The re-
¢

sulting equations derived from eq. 36 and 44 are given in Appendix XI

absent. For small currents, i.e., Y3« | , |- (_M)a—q.'_
2

as cqs. K-8 and K-1 respectively. The details and the Lorentz trans-

formations arc done in Appendix XI and the cquations arc consistent.

It is suggested that the neglect of the retardation terms adds a term

ajﬁﬁ to g as defined in eqs. C-13 and C-16, at least in the
()

linear casec.
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CHAPTER IV - SUMMARY
The dispersion relations are summarized here (see pP. 123 for
definitions) :
A. SINGLE STREAM N.M.I. (eq. 2-39)
a 0,
- €79 3 Yo d po
/= Tl = r r lm N0
¢ 5 ea = £ - ;2 fo
! !
4-1
g (2 2q ¥
/: < 9 afo dfo -—Q?T(.e ‘j 2 [m N <0
o 02 2 5 . kr, &> Dpo PP
9] 6, = lzf,, 9 o ( 7.9,)5
Initial velocity distributions investigated:
1} Pulse function "
ud | £ 2
Y ()
lk =z jama ’f 2
A 4-2
o [Pel > 3
Dispersion relation (eq. G-3)
. /
£‘8‘= ;f'oL A’-‘—)—/—g-}:(h‘ocr‘)a/a
z )’Mo':’ ‘7" ol )’3;
Stability criteria
1 <o orit ' >0 then .f> Y97 micr,
2 a
% ) . \l"‘rs“
2) Resonance function t}/ g _/Y_ .4 |
] a.n. 7_’_ Pg * Al .
4.3

Dispersion relation (eq. F-15)

;rL— é,, = Z s -4 t
l & hor, *

V¥ (m,cr,)
N 1




ol

Stability criteria

! (o or A>J vyr

J’ga ol )/92
3) Maxwellian distribution 4/
/ =

Stability criteria (eq. E-17, E-18)

!
_140 or
{

4) Any single hump distribution ,

Stability criteria (eq. E-15, E-16)

-F
v ! e ey

oA

! ¢co or .ﬂ >|V9r o€ T, if )‘,—; 7o
}«32 2 = yJ? )

where ¢ _ (F-F)
e /"'_‘—:d p
(t:-7)
F.= F(#.)
B. TWO-STREAM N.M.I. (eq. 3-13)
1) "‘[ 0%, ) 3'h- b
0o, -k, pg '% 8. k-po ™7
4-6
1 2 94’ a a"vu_
Lo a|l{ €79 AT | . e’q d
+[r_:a (*6)} = 7o m | 9P o
. eo4'k+f9 '-,E'Ill a,.- "h_f‘, *;?.

valid if Im J1 >0

65
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2) Pulse function v o] « %—
T A
hs A
lo |Pol> &
Dispersion relation (eq. 3-20)
Mo o3 e g
! = My MR, o o }:? Y
s = 2 - AP
4 (avy)* - (v‘4 ro?) (av)? - (v 107)

|
% %—.-Cq"‘od- [(“6)2- _5]3:
+ '

e (o e ot 4]

3) The above equation may be reduced to the two equations
{eq. 3-22)

1. (r, Nl v‘)’ = (av,) -V M-y, g

by

4-8

Stability criteria (eq. 3-24) Ay > 4 vV m. 2 9
hy

(l‘o ;fz_l - V'.)) = (A V‘_))

2.

Ve g L - vieglt )
Stability criteria
‘_Vhl_g_l—._a)<0 . . . . oD
;;’ s ('_ . , or if this quantity is positive,

sv \re ['_ Vel —n)]
- % ):Ja oy - h

C. THE EFFECT OF BETATRON OSCILLATIONS

The inclusion of the betatron oscillations, non-relativistically

shows that the R.H.S. of eq. A and henceV in eqs. 2, 3, 4 and 5
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should be multiplied by
for z oscillations (eq. H-13) 2 |- 005 1*n Z;
r-aV
4-9
for r oscillations (eq. I-20) 5 3
: - A
¢ 1-h T?
2 2
| + 3V 9¢ 1 '
& rol (,_h)2 9.3
if these factors are near unity.
The stability criteria given above are negligibly changed by
these factors. All the above quantities are defined on page 123.
Limits of Validity of Results
The results given above are valid when
il_ - 9'" [44 47:‘—\ o ?
l ) 2
and
AO 42 ’h‘l,;ro f(( Ie )5'70
A& ¥ Cl, ) 12
D. TWO STREAM LONGITUDINAL INSTABILITY (thin beams, eq. 3-35)
1) ) [ 3, oY% .
l e 9 p) .I)O (1770 " 3 ')’O f’a
- 2 r . .
| ﬂl'o) oleo,‘ﬂfﬂ o, - N . fo
Le Loomery . rim?
4-10

2) Using a pulse function for the initial velocity distribution
i/ |7’o| < A
B

0 rel > 5
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Dispersion relation (eq. 3-36)
= (2L) = e - (A
1 ¢ by L) |43
+

(\,+ - _f_z)’ - (8%, ) (u; - r~o;;_7)°~(A‘ﬁl)' 4-11
4

<|

Stability criterion when V, « vl 4y, =4V, = 0, Fm odm,
vg ¢ My ! (.”_1 b ‘)7“
Mo Y b,
Limits of Validity
A. & Fm_cr f(( I I %o
|2
4, & m,cr, if v, «¢
=L & L
1= h 4°
The equation is also valid for straight beams, if . — k,

?

Mo

The g factor, a logarithmic term, is then somewhat changed.

E. TWO STREAM LONGITUDINAL INSTABILITY (thick beam, eq.3-44)

a%+ du— 4 BI"J;— d

k2= wy [ v A B TP T
v- 2 Yol n
71—3 F“r
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where V=particle velocity

wi= Hmhyel
Py —

s
. . ih,2-(Nt
and the disturbance has the behavior ~ ¢
Limits of Validity
Ap, &mocr if Ve po» I_'_.l
) Je a

Ap. (e Fm_cr
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APPENDIX I

The Betatron Equations

We here record the relativistic equations for the motion of a charged
particle in electric and magnetic fields using the canonical formalism.

The Hamiltonian in cylindrical coordinates is:

H= C,J(fr'-g—ﬂr)a (7’9 -_€_ o (f --%- )+(h|( +€$0A1

Using the six Hamiltonian equations of motion, we obtain:

A-2a.

G:K"F —i-’f'ze"q") b.

é=—,f‘-(fe "2 A,) kg H-eq c.
e

b= e_ci _g_';: +U},_al,__(-{__’gr:;/lo)+e%_g_/13 —e%_‘ﬁ A-3a.

If the betatron field is azimuthally symmetric, then it may be repre-

_> B
sented by A,,,> Ag@ , where

Ay = Bor, (l ¢ U-hfr-r)® 4 "*a) a-4.

arg ar”

which, for small r-r, ,;_ usingB= ¢4 gives B,= 5,(&)". Also equation 4
o r

satisfies yyg= v (vv4)=0 and obviously also V8= v. vxA=0 . Equation 4 also

gives the familiar 2-1 condition at r = rg.
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For the self-fields we have:

PP t) = /f(r JIGAR SR (G /”,, A o

[r-rl [r=ri

Consider now an cquilibrium situation. Arlﬂ;"“‘o. and the self-ficlds
Aeand ¢ are assumed small cnough to be neglected. The equation of mo-

tion for the 2 direction is

) = € V.o 3/1 -
Equations 2b and 3¢ become '
< e A
Vo * s (-t,:; < ) A-7
and .
faS M2 A-8.

o, 7o and # are first-order small terms. Thus to lowest order

Ve =Ve= =€ B,5,, a constant.

Tne
Inserting these results into equation 6 gives
d(m2) —-(—ro PLY A-9.
dt 22

With the same assumptions the equilibrium motion in the r direction

becomes, using equations 2a and 3a,

poeomr

A-10
dln')= Vo 2. 'fﬂ.r_e_lq :-(—\fo_a__l{_
Ao (A2

Note that V= - fo 4 € A5 plays the rolec of a potential for ther and 2
<

motion, and that v; and V  are of opposite sign.
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APPENDIX II

The Generalized Potential

We show here that the idea of a potential well applies to all magnetic
fields with © ¢ nh </ . In particular we will show that

I’_v-E/IN=£L-C£AB B-1

r c r
where Ax is the vector potential due to an axially symmetric magnetic
field where 0< n <] near the orbit but otherwise arbitrary. PJ = o,
and #} correspond to the value of 4 at the equilibrium orbit /=, . Thus
eq. A-10 describes the radial motion if 4, is replaced by P, , andthe r
and  motion may be described for these arbitrary magnetic fields by
the potential v'= - ..';! #?eﬁa .

Proof: We have
E=Vi/?, Ba = %l(rﬂo): Ae f%‘?‘.‘o ) and Be’Bo(Q)h

or r r Bizd
Thas Ao= [ Bardr
= _'l:[or" Berc(r + 7,'—/,: B, rdr

and in particular if B, is given by eq. 2

he 2 + b ’""( o "o“) B-3

h r r a-h a-n /.

Since the expression for B‘ in eq. 2 has been used, which is valid only
near I, Ae in eq. 3 is also valid only near r; . The equilibrium orbit
is found from eq. A-3a, with g, =7 =0 . Since in the equilibrium
situation A:IA: =0 , and A ,<p' are neglected, the equilibrium

orbit is obtained from

9 1’__-_9_-_/40):0
dr\r ¢
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or P e e,
Rl = L
Therefore
Lo - -ﬁzﬁ} - e 4 -e8, B-4
r,"‘ ¢l or rsr, c roa €
using also eq. 3.
It is now possible to evaluate o - €A, . The substitution
r C
o= to-1o, B3

and the expansion
.i = I - - hh(r 'ru) + )1"'0]! “""I‘,)’ B-6
I'" rc r., o r."" a

are needed together with eqs. 3 and 4. Thus

ﬁo -EA,, = Py + Fo; .._e_ {i)_u - Bol‘gn (rl-h _ &;-.‘)]
r N

[ c r c A-h r

= _E._\ - _g_ Buf}.2 ((I-h)_L L r"“) .7

- - are

- h -¢br (’ ' ("h)(i:_":)’>

A, as given by eq. 3 is incomplete. Since vvg-o there is also a field

component .= - 3«9&» . This termis -@e 8.r. h2* . When this term
¢ < r*

is added to the R.H.S. of eq. 7, we obtain, by comparison with e¢q. A-4,

Po o C A = Pio- 2 Ay
= ¢

< T
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APPENDIX 1II

Equations for the Self-fields

S
By eq. A-5

TGARIIE e/ V(ro2,t- 58, pr pop)drdodsdp dpdp )

,r—r‘)

We shall show below that when the minor beam radius is much less than

the perturbation wavelength, that

(pln = eg_l_f‘f'm(r,ilf'.f"‘"'é)drd} dfrdf’edi’o C-2

We write ¥ as a fourier transform as indicated in eq. 2-18. For a

typical term the right hand side of eq. 1 is

IT= (¥ (r2,pr o popi)pile it 20, e de.

’I'-r’l - n, .’ 'dfrdfgd,’o C-3
- A ¢ "(_c_.f"l' 6(9
[ty

where A is independent of & . Consider now the physical situation. There
is a thin beam of approximately circular cross section with a charge den-
sity which varies slightly over the cross section. There is a sinusoidal
variation of charge as 8 goes through 2w, which gives a corresponding
variation in potential. Since it is %T? that we wish, it is possible to make

a few approximations. Since the beam is thin, the potential varies little
across the beam. Thus the observation point i may be chosen at the cen-
ter of the beam, i.e., r‘=r, , 2= 0 . Since the potential is approxi-
ma tely constant over the cross section we shall also neglect the transverse

‘

motion implied by the constraint equation, eq. 2-6. Thus

Ir-rd= [r2en® ~arn coafo-o) + 294 23(F T, [/ - I coale- )|
h x C-4
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where
2 2 _ 2 a2
A ot PR B (5200 SUE MV () W S
(,- ' r )J ") l/rnd l},—“i
Since r»r, for a thin beam, the 0 integral is a function only of

(r-re)>+2> . The r, ¢ dependence of ‘/’m is weak. Thus the surfaces
of constant I arc cylinders about the center of the beam. Because of
this symymetry, the potential at the beam surface is given by evaluating
the integral at (r-r, )*+ = f‘l and assuming that all the charge within
the cylinder is located at the line r-r, .#>0 . This is similar to the
approximations made in calculating the inductance of a thin coil,

Therefore

and eq. 3 may be written as
1/
N A1 k? cosfn-07]
r- fAeile g 82 Sy C-6
o[-k cox? (a-o v
We have also set le~t, r2y, o Next we make the substitution 0-0'=w

whicl gives

P

. 7a
. - . A hlego? <
(e’ T4 [’ ‘
I - () A ¢ e ‘ ‘l ok C-7
i YA ]l—b Cou -‘]'/* '
-n ' J
Since ¢''™: coutu ¢i vin t«, and the rest of the integrand is cven in

cos &« , the sin  term gives zero, so that
CIAT 1 e teen e
I= clo A/ c.od lu( [ I , d C-8

- 20, I—/(JL-VI«’ _,J_.}’/“

Note now that the major (.ontribution to the integral occurs when the de-
nominator is zcero. Thus the contribution of the exponent is small, If

desired, this term may be evaluated by expanding ¢*= J +x + x%.. This
al
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will give a negative imaginary contribution toJl , caused by radiation
damping, which is however smaller than the growth rate for the unstable
case, as is seen by evaluating the first term in the expansion for the
exponent and using eq. G-3.

The remaining integral is now evaluated by elliptic functions. We

have for 1=1 ,
["" roao dwt

‘fl.‘ = | - (,_ kabo‘l.l,.;‘af.)'/.l
2 a/v coz o« d C-9
(l'k“ Cﬂl’s‘_)l/‘
L
:4/’7' [-en’ g s ainpldy - 4/’ (/-Mn‘v’)fw
(l k2 aind@)?> (/ - fPain 50)/*
where we have written o« - w_. g . Thus
T 3
T Y™
¢ = coat old. - F (1-2ce®p)"dp C-10
L‘“ [ (I'k Coa? ot 4/ (l—lg‘d."y))'/a

This integral may be cvaluated easily, for m+ o,/ using elliptic functions.(25
For m=23.. one makes the substitution 2=.i. ¢ , and using pp. 181-2(,25)
these may also be evaluated in term of the elliptic fct. K, E. Since ke,
we set E, k = | in these evaluations. K (k) has a logarithmic dependence.

After some calculation we obtain

Lo = K ) K= 2n §r,
f Cc-1
L‘z'(-"_l L!= K - 3y -
3.5
- - - vr'v
LI-K __f{— K 7‘

The integral in eq. 8, with the neglect of the exponent, is

/ ool d"‘ c-12
[I‘ k? o ? ot
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1
Since coalw = LE a4, coa"% , eq. 12 may be written as the sum of inte -
"o

grals of the form of eq. 10, whose values are given by eq. 11. Thus,

after doing the algebra,

E.= %k 53=4(K’—;,}6‘)
) C-13
E, = 4(Kk-3) Ey=u (k- ¥
or
Es= 4(k-f) E, = 4(K ~Lon1-2 +.0¥)
Thus eq. 8 becomes =4l s +.02) | 1%o,
o Ly
I - etIGA E: C-14

2r,

Thus through eq. 3, the right hand side of eq. 1is
n (10-int
R.H.S eq. 1 = /dﬂ g_[e_q_, ¢ e df,.clf}dﬁ]e‘ ¢t c.1s5
)

where g,= %1 . The left hand side of eq. 1 may also be fourier analyzed,
as in eq. 2-18. Since eq. 1 is true for any ! and J1, the integrands

must be equal. Hence eq. 2 is proved and
- €, K= A 2r, C-16

s+, -5

2 f

Next we use the above method to evaluate an integral of the form,

A(r' ot t)- e/ c;:-(ro’/-e‘ZJdrdededF C-17

By the same procedure, e¢q. 17 may be written in the form of eq. 7.

Since coax = e'“+e'“in eq. 7, instead of the term e'’* » we have
a
(T ((1- . . .
e‘( #)« + e‘(l e Thus fourier analyzing eq. 17, we sce that it may
EY

be written as
AT = e_s}/J‘“(r,e,fr,m, pe)drdrdy d, dp, C-18
I

where now
g, = L. Ew t s
l & a ‘ C—19
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Note that g‘l > 9, from the concavity of the curve in Fig. 6 .

For completeness, we note that if the " 2, #,,p» parts of eq. 2 and

18 are integrated over, we obtain

(pUl

1)

e_rﬂl t//“l(‘f'o) clf’o
0 C-20

AT eif.l”’(fo) dpo
Fo
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APPENDIX IV

Derivation of 6= €, - k o

We here expand 9 in powers of fo » where

é=4 fﬁ'sAa) D-1
c

nr r

and A; is given by eq. A-4. Since we assume that Po i8 small we keep

only the first term in the expansion. Thus we write

6= 6, + (_ag) . Po D-2
a,"’ Pazo
and we wish to evaluate g_g . Note that 9 is a function of Fo explic-
(4

itly, and also implicitly through the dependence of r on Po » because

r’{(f.,) through the constraint equation r-r, = ’l-g Q—CBI . Also
from the Hamiltonian Equation A-1]

mc¢ = CJ(},_”O —;AB): }(hi‘,(‘)J D-3

which gives m= f(f,) . Thus

ol [P 2] ) [1 2]
() 2 () e -1

Using eq. 3,

Am "(o-gm)_ »-sA.a_r+J)
31’0 mc r




The crossed out terms are zero by the constraint equation. Setting

now fgy=0 , which gives r=p, » and using the constraint equation,

. -c » We obtain from eqs. 4 and 5, (setting r,=r )
3 (1-meds

20 - - .1 (eﬂaa-"_ = ).(—eA,)‘_
(TfO)r-: T mcer c—) mr{(i-n)ed) | c

= -— ! eAﬂ" - ! + !
mr3| e [ c? lnl‘"l-l.) Tr=

[}
3
D-6

= | - | - = - k>0
I r’{ 1=k * J-’) k ) ( )
where we have neglected the slight dependence of As and also written

Vo= -€eA. . Thus eq. 2is
me

6= o, - kfo

81
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APPENDIX V

Nyquist Diagram

(22)
The Nyquist diagram technique as used by Penrose is applied

here to the N.M.I. dispersion relations, eq. 2-39, to obtain generalized
criteria for stability.

To simplify the algebra we make the following substitutions in eq. 2-39.

We write
Y-k p, =-v d ¢ = N b E-1
6.- ko & avw K
and obtain
] af
[ = / v dv E-2
- v+ _{_1
F3
where
k= Me'q
AT, 63 E-3
o
Note that /fo(\, % | . We assume also that )’,’ >0

We will now find the condition that J1 has no positive imaginary part,
as a positive imaginary part means that any perburbation grows expo-
nentially.

The quantity Z may be a positive or negative integer. Suppose that

L=-17] . Then eq. 3 is

of

°/=/___?_L’_dlf . E-4

V..J).
iy
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For fixed 1 , the right hand side of the equation defines a function of

N, for NN with positive imaginary part. Let us call this function

Z_ . Thus
.{Z
z-(,T”,) - (B dv E-s
v = L

T

Consider now the imaginary 7)) plane, upon which is drawn the curve C.
See fig. 7 . As the dotted portion of the curve goes to infinity, it en-
closes the positive imaginary plane. By eq. 5, this curve may be mapped
into a curve in the W plane. Since the function Z. is analytic in the
upper half plane with no poles, the curve C is mapped into a curve D-,
which is also described counterclockwise and encloses all positive im-
aginary values of /1 , some of which may be enclosed more than once
by counterclockwise loops.

On the dotted portion of the curve C, 2_ = o . Thus to obtain an
explicit representation of D-, we must obtain the value of Z. for J1

(21)
with a vanishing imaginary part. By, e.g., J. D, Jackson this is

of a
7 _f_l_+io)= P QU dv + (T '_'F(m) E-6
1 - ov
I
The curve D- described by eq. 6, is sketched in Fig. 8 for a Maxwellian
distribution. The curve is labelled with values of real ). . This curve

(22)
is from O, Penrose. The interior of the curve encloses values of

positive imaginary (] . For distributions other than Maxwellian the
curve is asymmetrical, and may have additional loops, so that positive

imaginary values of /1 may be enclosed more than once.
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If 1 in eq. 3 is positive, then the right side of eq. 3 defines a

function Z ‘s

af
?*(171)= /_u__ dv E-7
v+ 2

The curve C is mapped onto the W plane by the function Z, . Again
the dotted portion of curve C corresponds to 2,= 0, so that we must

find the value of Z, for vanishing imaginary part of [0 » in order to

find the explicit expression for D+ on the plane w . Thus
If 4 ) -4
Z,[R+io)= P [ Bv’ -2t () E-8
+H(1? v N a v
T

The curve D+ on the w Plane is also counterclockwise and encloses
all the values of positive imaginary /1 , enclosed by the curve C in
the /1 planc. Fora Maxwellian distribution, or any symmetrical
distribution of v ,» the curves D- and D+ arc identical. For unsym-
metrical distributions the curves are related as follows: If we replace
Nl by -1 in eq. 6, we still get D- but traversed in the opposite di-
rection. The function Z. is now like Z, except that the imaginary
Parts have opposite sign. Thus if we now reflect the curve D- about
the imaginary axis, we will get Dt, traversed in the correct counter-
clockwise rotation.

We can now establish the gencralized stability criterion. The dis-
pPersion relation, eq. 3is Z= -/, Thus if the point -] lies inside

the curve D, then we have instability, Thus for stability

Z, >~ E-9
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where 2,, is the left-most point on the boundary of D on the negative
real axis, (see Fig. 8 ), because then the point Z=-/ will occur out-
side the curve D. (In Fig.9 this left-most point can be either point

l or 2 and this case will be covered below.) At this point Z, is real

and negative, hence the imaginary term in eq. 6 and 8 is zero. Thus

(ﬁ) =0 for 2] E-10
alf v = -_..;_1_

Since the imaginary part of Z goes from positive to negative as we
traverse the point Z, in the counter-clockwise direction on the curve
D, that is increasing values of /1 , the solution of eq. 10 corresponds
to a maximum in f.

Inserting the solution of eq. 10, v, = -:_Zn. into eq. 6 or 8, now gives

for the negative real part of Z,

Z,= P 'a'ﬁa,c dv E-11

V=

Since eq. 10 is true, eq. 1l may be transformed into an integral without

(za)
the principal part, (see O. Penrose

Fofo do
?,=P/_L.““’ /(, Ay e E-12

v -V,

"
This last expression is finite because f* fo * f. (v-va)ee, Inserting

eq. 1l into 9 we obtain finally

sy e () o s
/4°‘;Ollf ’ v V=V, ) 2=,
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as the condition for stability, for a single peaked distribution. The
left side of the above inequality is positive, and implies that if the
width of the velocity distribution is large enough the beam is stable.
(If 5* <0 ineq. 3, thenthe | in the inequality is replaced by -/
and the inequality is always true, so even narrow beams are stable).

This condition is necessary and sufficient only for single peaked
distributions, such as in Fig. 8 . For other distributions, as in
Fig.9 , it is possible to locate all the points on the axis and by de-
termining whether they correspond to maximum or minimum, one can
determine the sense of the curve D running through them. This is
sufficient to determine whether or not the region between any two
points lies inside or outside the curve. One simply draws any counter-
clockwise curve connecting the points in any desired order, but such
that the sense of the curve is correct. We have not found any theorem
Proving this, but the reader may easily draw any number of figures to
convince himself,

We now rewrite eq. 13. Using the definition of f . making the
transformation to £, again, we now redefine a new F=_f- 27 ¥ normal-

K
izedto /| on the field fo . Thus

> K
k[-L=F dyp
(kpe-kp)
or
! N Vﬂ"n.,ca

thr® (Fo=F o, e : E-14
“ J(rem )
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We define
_ff_:il:[f = ,__L
(7"’ ,f,)a - (¢ ,,)a ) E-15
Then we can write eq. 14 as
(Ap) > Hvar (mecr) E-16

a
Y, ok

which gives the criterion for stability.

Penrose has a plot of Z(—“Lz’)') » when F(‘-f=2,:'1119is Maxwellian, and
K

_pa
'.%" E-17

Fro=e

The negative of the left hand side of eq. 15 is then the left-most point of
this plot. To obtain the correct units, one sets w?=|, in Penrose's
figure, with the result

-(L.H.S. Eq. 15) = —%

or

Ar-‘ﬁ« E-18

using the right hand side of eq. 15. This result inserted into eq. 16

gives the stability criterion for Maxwellian distributions.
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APPENDIX VI
Resonance Function
We solve eqs. 2-39 for the resonance distribution function,
¥, = ¥ & !
Cooam T piead F-l
This function is normalized to N, the total number of particles on the
field 8,4, . To simplify the algebra we use eqs, E-1 and E-3 and de-
fine f=FK, sothat ¥,= ‘-2% F . Then we obtain
i
F = A ; : = ks - § = . F-2
" (L7 N T
k
Next we write F = k{" ka=yg’ so that eq. 2-39a becomes
© of'
[ = -Kk/ W_dv Fo3
lp v+ .2
?
or
0.+v) dv
= ~Kk(-3) (orw) P F-4
V‘ + n 0 f[/) +4 }
We shall evaluate the mtegral using the residue theorem. This equation
is valid only if /1 has a positive imaginary part. Thus the integral is
evaluated differently depending on whether ] is a positive or negative
number. Let us first assume that ]>0 . Then the poles of the integrand

in the upper Vv plane occur only at v;= -~ o, tia' which is a pole of
order 2. We will evaluate the integral now by closing the contour in the
upper V' plane. Sce Fig.10 , (Closing the contour in the lower half-
plane is also permissible, but because there is now a pole due to -_-gz_ , the

evaluation of the residue is more cumbersome.) Then
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/” (é’o’_“') dv- = anc 2 Res (upper half-planc) F-5
| (Ve er o]
where -
9, v
R =d (- : ,
es lv:v‘l d (v_' )(é.'WvIA')>(5° 'U‘-;A')a
: vy,
cd_Bov ]
dv (v g)(o.rv i) F-6
c{(Brv riaP (v o B)-(6 ev)f(Burv 1ia) o[w12) 2 (6, veia]]
M HCEIRTN
= —26'{324:)3 - Ll =y
(v+ j—‘)‘(a:y)’ (—é.o ‘a '.-I'l)’ Ya?
Inserting this result into e¢q. 5 and 6 gives
= 3kKa' -3ama’
’ . T ( 6, +ias -‘1) Y an
or

[6. +is &) kK=o

Scparating this equation into real and imaginary parts and setting

A= '?r - 6, , 8-+ 4" gives the two cquations,
A2-B" + kK =0 F-7
2. A8 =0 F-8

Eq. 8 may be satisfied by setting A or B cqual to zero. Since a4’>0 p

and we have assumed N;20 , B cannot equal zero. Thus the solutions

since f1; >0 , the solution is /2.

to the two equations are A= o,B<2ykK or izl. = -4 Kk Again
)

,» valid only if YKk > 4*

Thus the complete solution is

D_op o+ i(ﬂ?ﬁ ~A') F-9

l



If 1<0 , then the pole at —;ZQ is in the upper half-plane and we
close the contour in the lower half-plane. The only pole in this region
isat \;:=-9,-(a'" . The integral in eq. 5 now equals the negative of
the residuc in the lower plane because the contour is described clock-
wise. One sees casily that now

’LA’

Vv, (-é., RN Q)’ Y g3t F-10
?

Res

Since the integral in eq. 5 is minus this and procceding as above we

Aro-p g AL, i
T2 ; iy A . Again

B' cannot equal zero because J1:70  is assumed and hence A'=0 and

obtain again the eqs. 7 and 8 where A'*

B'= +ylK ,or = p' syKke . Again since f1;>0 ,

-l
Nz ar Kk valid only if YKk >a’
-1}
Combining this result with that of eq. 9, we have
N =06, =i(yKkk -v) . Kk > e F-1l

and the plus sign is valid if ?>0 , and the minus sign for 1<¢0o

Next we solve the dispersion relation for the damped solutions.
There is now an additional term which must be added to the right side
of cq. 4 as is evident from eq. 2-39b, Using the transformations,

‘}'a =3’_\'_/r k£ » ¢q. E-1 and E-3 and Js=: 8" |, this term is

J'ﬂ'[(Kk)%{‘(-'{l) = ')WL(KIZ)(J)#'RQQQ:J){PA')] . F-12
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We assume that 1>0 and perform the integration as in eq. 5. Since

le now has a negative imaginary part, there is a pole at v=y; = -%2 h

in the upper half-plane besides the pole at ;. Thus we have a term

= 6, +v F-13
vy [(éo )t e A ]a

A7 Res

= AL
v
additional to the Residue atV; , given in eq. 6. Inserting this term into
eq. 4 we see that it cancels exactly the term in eq. 12. The dispersion

relation is now again the same as eq. 7 and 8, with solution A0 . B

cannot equal zero in eq. 8 because then A is imaginary from eq. 7. Thus
fromeq. 7, B=tVkK o 'f"= -4 oKk . Since J/1; is assumed

negative the solutions are

Die o4 - yRE % = -a" +{Kk F-14
Z }

where the first solution is valid for all values of 1/7(7&— .

Next we examine the solution for )= -11l. Since the pole due to -.-_?-_
is now in the lower half-plane we close the contour in the lower half-
pPlane. The integral eq. 5 is now cqual to the negative of the sum of the
residues. Thus we have a term equal to the negative of eq. 14 due to
the pole at —% which again cancels the added term eq. 12, because that
term has a minus sign when ] is negative (see comment following Eq. 2-39),

The other Residue at v- Va is given by eq. 10. Inserting this result

into eq. 4 now gives the eqs. 7 and 8 where A', B' are defined as above.
l Again, the solution A' = 0 to eq. 8, gives real solutions to B, while the
solution B! = 0 does not. From eq. 7 we see that '+ Kl or_,Q_.'= LKk
]

l Since /); is negative we see that the negative sign for the radical is
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valid only if {Kk<¢ &' . Summarizing our results, the roots of eq. 2-39

with a resonance function are

.J_zl_ = 6, +i (-4 +{Kk) F-15

for positive 1 . For negative ] , the ¢ becomes -(.
When K is negative, which will occur if §5*< 0 inecq. 3, eq. 15 is
still valid although the derivation given above must be modified. In

particular, the quantities 8,80 now and A,A’%0 ,
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APPENDIX VII

Pulse Function

Here we evaluate the dispersion relation eq. 2-39, using a pulse

function distribution for 43 , l.e.,

Vo for -4 ¢ p, 2 4

‘P - ?; E 2 =3

° G-1
Q otherwise

Eq. 2-39 now becomes

1= e v fnet)-s(n-g)

Wroava (o--2) -k
= €9 W [n _ !
8 - e 9 -1 -
r, ama [(9_ _l)+h_3x (9. 2) k.&
= eq 4 ~-ka
o T
A a
or
o -AY = ;ﬂrf . [kePqW s
° Z 2 Jo It/ Y IS )33
Writing now k= J%F‘ , andﬁ;’ﬁ= V , eq. 2 becomes

é.,“-?‘:i"( ﬁ _vgr(m.cr)z/a

Fmor® |4 );Joc

Note now that the second of eq. 2-39 also gives the same result.

6. - 4

This is because % X O only when =44 , which can occur only
(1]

if V=0 byeq. 3. Thus eq. Biis valid for i [ positive or negative.



APPENDIX VIII

Betatron Z Oscillations

In this section the method of characteristics is used to solve
cq. 2-54. The dispersion relation for the N.M.1., with the inclusion
of the axial (z) betatron oscillations is thereby obtained.
Eq. 2-54 is a linear partial differential equation in the variables
2, $2 . The standard technique for sol\(/uzg this equation is given in,
2

e.g., Cohen's "Differential Equations," The solution is obtained

by solving

dp, da dy'n
-a, 3 ay p, a,p'n 2% -(a.+ bp2)¥” H-1
2P ’

[}

The solution of the equation obtained from the first equality is @, ﬁ%qa;“

* ¢,. To find the other solution we use the last equality. This contains
£ . Using ¢, , to eliminate 7, » and eq. 2-57, we find that 3‘2=/9f(c.)
and hence is not a function of £ any more. Thus from eq. 1 we must

now solve, after rearranging:

A¥n | (e b) ¥ oagn 2K
d? Vo) (e - a, 29) {_,(c,-a, 2?) e

This is a linear differential equation for ¥ as a function of 2

(26)
Again using standard techniques as, e.g., in the book by Cohen, we
find for the particular solution:
/ Qo t+ 1) - .’ /..__.."—“—hg-:—— ‘[
& (6527 e Gy
P dz | 4.5

¢ s fq (/,m )C
( 2 po ).qu(c,-a; 2%)
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We do not consider the solution of the homogenous equation for which
P.— o as it does not contribute to the N. M.I. (Note that the first
factor is independent of 2 .)
(27)

We next integrate the exponent. Since «,,d;>0 and using Pierce

#121, 132  we obtain;

F= [Qetb2® 4y - (“':’z’—:‘;l_““’@"—; - bayas(c, a2y g4

Yas (¢, 2a2?) ——_}/"natl; 2 a,q

We can now see that the solution, eq. 3, gives the right limit as the
2,4, terms approach zero. From eq. 2-55, Qa3 = n6} . From the

definition of ¢, , max ¢, =aas p' . Thus &< o bp’~7nep’ and the
Qa, ,—"

: . 2 o i
sccond term in E is of order ',?‘a . Similarly maxfayp2 '-'ﬁ:f: and the

third term in E is also of order J’_‘ . Thus the factors of b arec of
rl
order 4 . To obtain the limit of ¥'? as f-'oo , we may therefore let
r

b»o ineq. 3. The integration is casily performed to give:

N n a‘/ﬁ !
= — = H-5
'f/ . (P a/’o .,

which is the solution we would obtain from eq. 2-54 setting all the 2 terms
equal to zero. Thus we recover the correct limit from eq. 3. Any arbi-
trary constants which appear in the evaluation of eq. 3, may therefore be
resolved by noting that eq. 3 must give eq. 5 whenz—>o . ( fa is the
minor beam radius, while 2 is a coordinate in the beam.)

We continue to evaluate eq. 3 and perform the integration of the term
in the bracket. This may be done easily, only if we assume the exponent

E to be small, for then we can expand and write efx /+£ ., Byeq. 4

- 2 .
sincé -,f—; «| , we therefore require also a, « yd;a; = Jno, . As we
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shall see below, this implies that in unstable situations the growth rate
should be much less than the axial betatron oscillation frequency. This
is well satisfied for current densities of interest. Thus writing eEt/‘L-"%:

we obtain from eq. 4:

I+ € + €2 YU - Py (I)
2 dr ’\lcl,al <,
va;(c, - a;?) a
+(“-*_Lg:)[4iﬂ-'_g_=;1 - b () H-6
s ' 4azay
20, a,;
EJ
+ llm‘J(e) (3 )

where 11053) is an odd function of 2 . This eq. 6 differs from the brack-
et term in eq. 3 by a constant because /e"&(x ac /(lf»x)alx and differs
by a constant, because although e¥~/+X two indefinite integrals differ
by a constant. To find this constant, we let 2 > o in the bracket term

of cq. 3, which is equivalent to letting b+o . Integrating gives
/e de / a ‘ a 2
= 1 v =~ L +[ Qs L __o_ah)
[3] aoe a / /U__di- *.1(/(/__'
These other integrals are trivial and it is seen that eq. 6 differs from [3]

by the constant ~a—'- .+ We can now evaluate the 2 dependence of ¥'?

)

by expansion of the exponents in eq. 3 which we denote -F'&) . Thus

(e E) (& [l £)4)

:(I-E+€_‘),,(;_o . (/-E)/v_':_ol; + l/%cl-z-

; e [1 =114 ke 2! £ b 2V H-7
= a. ( 3«.“1) Yasay Qo 2a,qy
I-ay’ o ~€+a,’ -Fa

Py das 20, Qo} Az ay
e ~Ef £

+[(au 3 3(as +bes) e (ae o 222 L} [onT

2a Qoldaza aza
L he q e 2a, a; faiaq J 5.;,“;‘ ""1': 3.

£2.43

-f[(“o + —}’—5—) —'-0 " Q ba y— i’ +._‘(_"_3’__1)‘(1/'—")1 - bz’
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Note that when Z — o, ', —., » 80 that eq. 5 is obtained, which
indicates that we have correctly chosen the constant. Note too, that
therefore M-‘E 0 as z— 0, which fixes the branch of this
function,

We have kept only those powers of E which give terms ~a, . Terms
which give higher powers of a. have been dropped. Eq. 7 contains
terms proportional to 3'., ) -Qf. A /. The terms pProportional to !

and Q. only, cancel out. If we keep higher powers of E, the terms in

a3 a m .
Qs, a, | etc., would also cancel because as P —o , f a—' while
-

sin” remains finite as p>0. We have also denoted the origin of each
term in small script beneath it. Note that f'* is also a function of +e
through ¢, = a,z2« a,.;;.a This ¢, was a constant only in solving the
right hand pair of equations in eq. 1, but becomes a variable again, in
the solution for ¥'*. This follows from the theory of solving eq. |,
In eq. 2, we have used the positive square root in writing Ay p* v

=-Ja (c aaijThus £ in eq. 7 is defined only for positive £ Using

the negative 8quare root for #, , we find that sin”’ also changes sign

(cf. eq. 4).
- . . . . s = L (]
To obtain the dispersion relation we must now insert ¥'* = L9 397’;{'-"
into eq. C-2 and ¢ and 4 represent perturbation quantities if J%o .

Since we are considering only axial betatron oscillations, but assume

the constraint cquation linking r and #o to be still valid, the integral

i8 only over Cl.-f’a 2 el # . Thus cancelling 50”‘ » the dispersion

relation-becomes:

= e_‘]“/ ot “r(mo'(fod;c(’-,v; H-8
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%  is a function of ¢, ,»and henceis evenin g, p, . at’' s
odd in 2 , while V™~ = 414, isoddin #; . Thus the second and
third terms in eq. 7 give zero when integrated. The term in 2 ¥V~ aé
2 1”,443»::3 is evenin 2z and apparently odd in 7 . As noted above,
however, sin”  changes sign when f» changes sign and hence 2/~ <’
=24, 4in " is even. Also becanse ¥ is zero lor large o all terms

in fm without the factor do give zero in the Po integration. Thus

the terms in eq. 7 that contribute to the dispersion relation are:

{' =Ly s [be Y,g,_‘l:_'_)_l r (_‘i?)J g pult _ bz ayp, ain’ p—
in ao J“) J‘Udi a .70,"{ .)(la')lh(lija((s

3 . . . Y
The smallest term in this expressionis ~ £° . It we compute
a.

. 2 v pb
{m In ¢q. 7 to one more power of E, we wonld get terms valp’ p ,L .
a.

Since we want the lowest order non-vanishing term in /)“ , it seems that
we should also keep a, ,"" terms. However, all these terms are odd
in 2 and hence give a zero contribution to the dispersion equation.

We now integrate ¢q. 8, doing the of; ({/:; integration first, The
Z » pe dependence of Y. is contained in a factor ¥, , which is in-
dependent of o , and as shown in ¢q. 2-57 is a function only of ¢, .
Suppose for simplicity we define

4
N Csatray plos a, f

l/z , for , H-10

V) C Caup

% is normalized to unity on the field z #« - Nis a normalization

constant. Thus

N/'Ji"'[f’u =/

A
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Since the area of the ellipse ¢,z a, /” is A- 7"1/;? £? ., we find
V= ';f- . The integrations are now performed most casily by changing
to polar coordinates. Let
aazlrayp =asrt ZSrdin6
* st : 2 with the inverse
4.0 = YAz transformations} [@; P,7 o ©
]}a,g‘ ocl,’a?’

The 2, y, integration of eq. 8, now becomes using eq. 9,

[%@ n d?dfo“'

2 . .
I[’ e _ (""9 + F2aun?0 r3cod®® ~r.r gimg. H-1

‘Ia,(l] el

2 (1+ %)
I" Ja_’ ,dr“/f_e_a , UmPdco0 - o,a,ivnae]de
%' ‘I-Cl;al - 2 '1 =3
k)

- b g
‘-fa;ﬂ;

3
H-12
N ba _L:‘l m
aa; 1x|3aa 32)
= h_L = .lr_’ S N N AN YY)
d P a4 It e
and

I

] |:,_ °n 7_L."’(.oo.f')] ]

, =
In the integration over @ we have used Pierce #176,20l. We have
also used the values of b, @3, a; from eq. 2-55,The only difference

between eq. 8 and the dispersion relation of eq. 2-39a, is that now the

number of particles is multiplied by a factor

=, | —

i

H-13
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rI.‘hua the effect of 2 betatron oscillations is to improve stability, as
expected, but only by a very small amount. Note that even though this
effect goes as ke » it cannot be large for small wavelengths, because )
the equation for the potcntial (C-2) and hence eq. 8 is valid only if -zrﬁ.»f
We have assumed above that [@.[¢“{2: ¢y to make E in eq. 4 small

sothat ¢ = I+ £ . By eq. 2-55 this inequality implies that

/ﬂ-Zé,'Zlefol « h 8,

H-14
since
[L-26 ¢ Jlepo] ¢ |N-16.]+ [1kpa) H-15
Eq. M4 is valid if
- 10) *+ J2kp| « AR,
or .
fl- ?i. <‘I ?/E'Eo ((/ H_l6
rﬁ 0‘ ) ﬁ o.

This requirement is net for weak currents and small temperature spreads

in the beam. Sece, for example, e¢qs. 2-8 and G-3.
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APPENDIX IX

Betatron r Oscillations

Here we solve equation2-62 following the same general pro-
cedure as uscd in Appendix VIII.

By standard techniques we must first solve

(1,9,. = d)( o c( 4,11:.
-as X as p a, ¢ 9% —(q, +[,,-)4,m I-1
9/’0

The solution of the cquation formed with the first equality is
d,x? + a, /’,'] = ¢, . Using this to eliminate #» {rom the last
cquality, we obtain a differential cquation like eq. H-2 but with byx

instecad of b 3° . Thus

19 0 [' 14 _ N
dY™ o freboy'” o A 5= 73
o x \Jal((,-u,i‘) ——

aifc, -a, x?)

The solution of eq. 2 is:

- f derby A J Aetbx dy
Y o a, ete (e -aav3) 9‘);:‘: e G2 dx I-3

This is the particular solution. The solution of the homogenous
cquation again implies that ¢'"'<0, which does not contribute to the

N.M.I., but is a trivial radial pulsation,



This solution is similar to eq. H-3, but since X= f(;»,), 52—;'"-
C
is also a function of X  and thus cannot be taken out of the integral

signs, i.e. by eqs. 2-61, 63 and 65

% . Ap ¢ Ariﬁ- aa;x(;)

2o 3’,0 2() Wy (I-n) I-4
= My Sy oA, afe) [ZRaax_
3.,’0 ac, MV, (1-h)
We have reinserted the constant C, . after the differentiation,
(27)
Using Pierce Nos. 121, 129, we can integrate the exponent

in eq. 3 to get:

F= [Betbe 4 - 2 abn” oy - b (G g x3)  I-5
ial((‘—('ayi) 40;(‘1 <, a,a;

We will now show that eq. 3 gives the correct limit, eq. 2-39,
for the dispersion relation as the radial betatron oscillation amplitude
p=> o . Fromeq. 2-63, aq,aq,= (1-n) 6':. From the definition of ¢, ,
max C, & da, f‘. Thus bTi x bp?a I(I-h) 9_/0_: and the second term in
E is of order —,:_&: . The first term rerrcains finite as 4in™' is =
unity, and [a,/s N1-1@, + ZL'/:U is independent of and §- .
Thus the b term in E goes to zero and we can get the appropriate limit
by setting b = 0 in eq. 3. The integrations, using eq. 4, are straight-

forward and may be done in closed form. Note that the first term in

€q. 4 is independent of x, while the second is ~ x. Thus the following

102
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two integrals are required for doing the integrations of eq. 3:

i

r——— Qo a,

_a_o_d Qe 3 ;-
/el"_'plx-' FET L e

I-6

Qe oy a, o
[rell s ax - e ar) i
a.’ + aa a’ *
We have again abbreviated 4 = "a,(C,-a,x-"s . Now that the integra-

tions have been performed over dx’ the p,"ly" dependence of ¢, ,

is again inserted into eq. 3. Thus 7 =asp and eq. 3 becomes

'[’o Qo 3C, mv, (l-b.) a} +va,a

= @ P |26 4 2f 20, (a,x-a,f,)J L

That this equation satisfics eq. 2-62, with Xx= o , i.e. b=0,
is easily verified by substitution. The second term of eq. 7 will be
shown presently to give zero when integrated over in the dispersion
relation. To obtain the dispersion relation Yin  must be inserted
into eq. C-2 written in terms of the fourier components. We ignore

.
the dz c(p‘\ integration or if we wish, assume that Y., contains a

factor normalized to one on the ficld 2,¢y . The dispersion relation

is now, after cancelling Pin

| = _eﬂ ‘Pm dﬁ,d,—d’/,'_ 1-8
r 50):1 .
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fine f(qaw ¢a,,;‘) where X=r-re

as
N C,'—‘a_\(!'-l‘g)" "ﬂ,,’raé alP:
f= for
) c, >a, f‘
N is a normalization constant, and just as in the discussion following
eq. H-10, ¥ = -A%- , where Ae =7 :—:[’a . Note that since f=f(p,)
]
the dr df, integration must be done first. The first term gives
| = eqa, Ay ‘(fo 1-9
o 9 -"o .

which is the same dispersion recla

second term of lhn is facilitat

The procedure is exactly the samg

cq. H-10. We define

a .
aX’+ a3 9 =a, k7 with

- tran
aing = Ya.X

Yasx> v ay p,

L d
We can now write

.h
|

as f may be regarded as a pulse fy

tion as eq. 2-39.

£
IR

Integration of the
ed by going over to polar coordinates,

¢ as used in the discussion following

the inverse X= Rainé

sformations Ia, p= Recezo
a,

Vo[ae) - s(r-p) ]

2aa R

I-10

inction which is constant as R goes

from 0 to P and is zero otherwise. Also Y= r-r, -—7¢ _and in
mv, (1-h)
the r integration, ¢, is a constant. Thus evaluating the Jacobian

dr d g,

I‘iz. RdR d o
ay
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and f ‘f": drel Pr
= Q‘ ¢”‘ A}n ”[J(ﬂ)“J(P‘/‘)] (al _a_’_ R Coz € Qo R/Ll'm Q)de ﬂ_;d'g
: a
(ao" +d, QJ)R lnl/‘_(l-h) ! “3
ca @, ! /“aﬂ] (6 -a,2ind) I-11
TP mvi(1-n) ag + aaay

We note now that 4, is defined only for positive values. To find the
correct form of ¥, for negative fr » wWe must go back to eq. 3
and change the sign of the square root term. In eq. 7 this results only
in f» changing sign. Thus the sin and cos representations for x and
f. arevalid as O  goes through 2w and the integral in eq. 11 gives
zero so that the dispersion relation is given by eq. 9. Thus eq. 7
gives the correct dispersion relation, as asserted.

It is interesting to speculate on the significance of the { functions
in the second term of Y. . Owing to changes of Po of the particles,
the radial position is displaced. This occurs for each of the tubes of
particles centered on different valucs of p, . The distribution
fux;ction of a tube slightly shifted differs by a §-function from the previ-
ous distribution. This distribution is ~ §coa & , where the §-function
is on the surface, i.e. J(R-f) , for a tube of radius )0 . This shift
however does not affect the density of particles and hence does not con-
tribute to the dispersion relation of an effect, which occurs because of
e clectric fields.

We shall now derive the correction to the above results due to

finite betatron oscillation amplitude. Since both terms in the exponent
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of eq, 3 are small we shall now expand the exponential in the same
manner as we did for the z oscillations and then integrate. We write
eEz {+€ +£" and integrate in eq. 3. We shall first consider the
ey
first term in 83/1;"- which is independent of x, Thus using eq. 5:
0
| +E + E’) ..
( 2 lely = bt ,__a’ X /fl)
m '(]; oy <y
-1
+ [ a ,(] - _bx f-€)
dayaj J a; ay ( I-12

«? [ALL-\-']S a, b TIRE ]
b - 4 X i *Js.- E Ea.Y’)J
2 3-(a,a))h (o, a,)h as c.

(.1 a;:,)‘ (XW ‘(\’&l aﬂ) (fé:)

This result differs from the integral in the bracket of eq. 3 by

a constant. The argument parallels that following eq. H-6. If we set

x = 0 in eq. 12 we obtain zero, whereas from eq. 6 we have -

Thus the value of the constant is found.

Writing now I-13
T o
. 4’1/, R AT 3 ’xu {( ){l
for the part of ‘/jn due to the first term of B‘M » we have
2%

a~ - s _ £ [ £
from(i-e e _5,)( +/( ' T)t/x)
. (/—[ ¢16 l)//((x +(/- {E dx  + I(Edy
= 3
. — )R
=L ()2t LTy de - ey dg) fuln?)
Go )1[51., az Qo dy Ay S ay 1-14

e - “Eg f""él

o
T
)
l'?]
+
i
1 53
i
Wi
~=
s:l -
&
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+(___.)b_r_~;»:_ o L BEGTN . kX

2ae (a,q,)-‘/.\ as 2 (a, a;)? 0, Q,
g’.u;' -e.f, ;,'--:J' " e
.8 2 O-l a . .|)S -
N P PO t/,’z'rv‘ + (390 _a. , a.)b Qi
a, 31 % 1 aj(asay)”s 3! 4 (as a1)?
‘_ll_:'.u;' ;'.{- -0 :.[f_' -,f,:-u;' .:."-/' =éf¢

AR S | s (et (o) x
(51 '3 —

(aa a!))/‘ 3.’00 a, ay (a, Q’)J/a
_lr:’.q.' ;'.{. -‘L:' Ty i ;-/“
+(-—' '/)—L—bn X + o~ .ll~&l’ t o~ kT
q (a) ﬂ’)J (.l
h!i. -0 e /“ "u“

In the foregoing calculation the last three lines are the result of going
to one higher order of E than in eq. H-7. We have calculated terms up

to ia, a,f. Those terms which are odd in f) or x will not contribute
Qo
to the dispersion relation, ¢q. 8. Thus the only terms in eq. 14 which

contribute are:

r _ b*(a, p.)°
. = = L 210 P )
n 2 (tl‘ u,)) I 15

. . T,
Next we must calculate the contribution ¥ i.e., the part of

n
V. due to the second term of 53-1)‘- in eq. 4 which is proportional to x.

fo
We again evaluate the bracket of eq. 3 by expanding the exponent and
el 3
writing e = | tE ¢ .352 . Thus we need the following
expression: £
x(1+e + &)edx = -4 [
., d 3

7
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-, 5[""_';4_1"__v:: po Qe X hx? r
(a, u])'VA a, a3 dayas
e, e (X"’"."_' '\[_“_' __.x;) ¢ (=) My +c.\,'<ﬁa'm\"
ua“l 4 (lh lh)y“ a,; ((I, (,‘)J 2 a,

ba, C, e,y ! ay L€
+ SNSRI F IRat 4 _,)0""" J‘J__‘x —f‘;x_i' [ 3
AR (e R R B

PR

——— .

3 (a, q!)j

- .- —— S,
where as usual gt = 40" ,.C"i X \l E\ja,(c, - Qa; XT)
c, [ .

If wo now write
n of - '1_‘." .{ "
‘P) n = (" ({)“‘ A,' DC' v, ("‘") o 1-17

then

F,n=</—f;£’)'/x (¢ '-%;))c‘x =
n 4 - - = .
\

(Note that eq. 17 reduces to the sccond term in eq. 7, for smali x, Proo

and a, .)

-
- Instead of writing out the expression f, in full, we will note
only those terms which give a non-zero contribution to the dispersion

’

rclation, e¢q. 8. From ¢q. 10 we note that J')—f- is even in x and P
Thus only terms even in x and pr  will contribute. Replacing ¢, by
ax’+ay; p” inecqs. 5 and 16 gives the - dependence. Since all
the square roots are positive, the equations are valid only for positive

Pr - Thus in eq. 3 we must substitute -N" for N~ to find the behavior

for the ncgative #+ . We find that the N terms change sign and so




——ay

109

does oin”' |2y . Thus the N and .in"' terms are odd in P
<

! is also odd in x. Thus terms like the following give

while Y
a zero contribution to the dispersion relation, Pr 2in X, X, P o 'y)‘,‘
plainly f”J, X by , 1+, xpetc. Finite contributions are obtained
from terms like X2 -/’,°l (4,'m" ) and X (ain"x) P .
The expression E is of order o, f - We thus find that
/J—‘—x—'",y is of order p
/‘I—f—f‘“ is of order a.f’/"

L E? gy is of order a; p,a,p’ p°
& foapior
All*terns Yol dides a;’ f.(rz 009 )in f,> must be odd and

integrate to zero, because they must be compounded of the factors

(di»."x)"x or (oiv\';‘() #r . Thus the lowest order non-zero term is of

order p? . There are also terms of order af/f a.,"/"' etc., which
we will neglect because we assume a,« [/ . Thus to terms of
order f"

5 [ e fr

and the non-vanishing terms are:

(- - by ()

'n

da,ay (a,u;)‘
= - b (a,x ’y 2 a; ,’,-3) I-19
JQ; qs
z al . d/
all:{]&

Collecting now the terms in eqs. 13, 15, 17 and 19 and inserting them

into the dispersion relation eq. 8, we obtain



l' uo

I= &9 a..?lﬁz;(c.)-’—(’ G o f">

Fe 3y a.s ¢ a3 ay
re 1-20

¥ a, A 9 (-2a,) (-& "() 6\’77 c(ro/f,.

af, l‘nl/'([ h) 2“; g

We shall do the of, "Iﬂ- integration first. Thus 4, is a constant and

dr =d x . The first factor is

I, = [[ {(C.)Gtxdfr = /
using the definition of 'f' given below eq. 8. The next factor is

I fee) pe ebxdpr

= [— I as p> "rm 29 RdR [@5 fo
as 'TF/’ ay ay a, £2
T a3 ¢

We have evaluated the integral by changing to polar coordinates as de-

fined in the discussion following eq. 8. Finally, we integrate the last

p——— i o i,

R

factor, using polar coordinates again, and eq. 10. Thus,

Iy S // 9f d, dydf,.

/f’IJ(m'm* P as e [ coroprelef@s de
a, 77f 2 a3 R 2 as

-3
Equation 20 now becomes, using I, I, and I3, 2

—L L) Ppr) -3 Ak d py
9/0 a, fas uy d b (I h)a, ay

Ap is normalized to N on the field & g . Defining A,= ¥, where
amr
4{, is normalized to one on the field f» + and inserting the values

of a;and b from eq. 2-63, we obtain
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_ev ok I ,, egvs 8
/= awr, [ po g - D py, fe anr, 2 Mg ()
o
Writing vz e? ) we obtain
cr XT
L ‘) I-21
/ = V9”‘°"(’ 2(1-n) % % dfo
vga.3ca ! dpo @, -N _}
] + 91 Ira P > 2 Po
If we use a pulse function for % , the integration may be performed

as in Appendix VII. Because of the factor before the integral in eq. 2,

we obtain:
r
Z? ?
I f(1-») {;“ 1-22
N g )= (a6) - Vi<
l ' r? / + Vﬂcl._:f.za
rﬂn a éo‘(l-h)j
‘ instead of eq. G-3. Thus the betatron oscillations have two effects.
q

One is to decrease the effective number of particles, because of the
l fa term. The other shows that the maximum rise time of the insta~-
l bility i{s of the order of the radial oscillation frequency. In the case of
the z oscillations, the effective number of particles was decreased by
[ aterm ~ j’“ . Note too that E}{f«[ in order that eq. C-2 }-mlds.
Thus this factor is always small a!.ld the finite radial oscillations have
negligible stabilizing effect.
We now show how the additional term in the denominator affects
the rise time. The dispersion relation, eq. 21, is valid only if AB «é, R
because we have assumed a thin beam. For stability (a 9)3 > }-}if—a

']
and hence for small ] , the second term in the denominator is small.
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It can be large only when there is instability. In the limit when

¢? 6°(1-n)° : - ;
V9 7= » _a__l.;___ we see that the instability growth rate is
[}

A6 x ti Bl
2 !

These results are all reasonable. We expect the betatron oscil-
lations to improve the stability. It is, however, a surprise that the
effect is so small. That eq. G-3 is invalid for large growth rates and
becomes eq. 22 is also reasonable because the constraint equation,
eq. 2-6, breaks down for large growth rates. Note, however, that in
writing eq. 19 we assumed that higher powers of ﬁ are negli-
gible. This requires the validity of eq. H-16, with pn = 1-n . For
the unstable case, as 40 « é. , this implies that the second
term in the denominator of eq. 22 is small. Thus our conclusions above
about the limiting growth rate which obtains when this term is large are

not accurate. It seems likely, however, that the inclusion of the higher

order terms will not change the qualitative result.
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APPENDIX X

Infinite Beams

We shall show here that an equation obtained from Bludman et
al.(lg)is the same as one obtained from c¢q. 3-44.

In eq. 3-44 let ¥, represent a pulse function of very narrow
width and let V;=o . Then the integration of the first integral in
eq. 3-44 is done as in Appendix VIIL If the width of the pulse now goes

'2 . . .
to zero, then this integral is ._:;!1: , as ¥, in eq. 3-44 is normalized

to one on the field V¥,. Thus c¢q. 3-44 may be written as

a of,
[ = Yoo+ M 5V du 3-1
v Yiky ) v - w

[

which describes the longitudinal oscillations of a relativistic electron
beam, which is not too hot, travelling through a stationary cold ion
background. We have also made the change of variables V= V. sv, in

the second integral of eq. 3-44.
(19)
Now we shall obtain eq. 1 from Bludman et al. From
(19)
eq. 2.19, p. 750

a - d
[V = by ' I)‘ .

w, represents the plasma frequency of a cold background plasma.
This equation is equally true if the background has no electrons but

only ions. Then ) -— 4«:, , and

(\J: = l\/l + T J-Z

P+ ¢ 1
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(19)
By eq. 2.2a,
I - yre’ {;a VoY 3y 5.3
' N Vek, 8,
where we have made the changes Vv, >v LIy > LPv . If we

assume no perpendicular velocity components then V.70 , and from

(19)
the equation on the top right of p. 748,
= =V, {1,
vy fs 5 J-4
and
v f = e o v A, ot 2k J-5
Y los 3[’\» )}’ Y v e v
f,, is normalized to n , the particle density, on the field d V. Thus
o8 p 1]

inserting eqs. 4 and 5 into eq. 3 and integrating over the perpendicular
components, we obtain (/L= w - v, ky),

I = —/ 47 n wllled afoc‘tf = -i/tfk/ ‘7‘[- J-6

e I, W=k, v s oV dv
v - ur/,:i

where f, is normalized to one on the field dv . Also

7 B . o, (3,
v dv =f v dv o+ =5 4V
v -V "Le w - v ll\' J"F

a
J-7
= o o,
= -(\r'i —'—L-e i/-;%ST O{V' = ,% B—u’_- a!v"
Womuk, ‘e T
e




Inserting this result into eq. 6, and then eq. 6 into eq. 2 gives eq. 1

Q. E.D.

115



116

APPENDIX XI

Plasma Oscillations and Lorentz Transformations

We will show that the dispersion relation for longitudinal oscil-
lations of a single stream of cold relativistic electrons, as obtained
from eqs. 3-44 and 3-36, may be obtained from the equations for a
stationary 'stream' by a Lorentz transformation.

First we will consider the case 'of an infinitely wide beam as it
is simpler. Setting the number of ions equal to zero in eq. 3-44, gives

w,, =0 . Using next a pulse function for ¥_ as done in Appendix VII,

Pe

and then setting the temperature term equal to zero in eq. 3-44, the

dispersion relation for a relativistic beam becomes,

N=Vk 1(' A/,’.)'A K-1

+

In a stationary system, i.e., moving with the beam, we see the
(28)
longitudinal plasma oscillations, given by

=2y,
where
(Uro)‘ = YTh,e? K-2
e
h, is the electron density measured in the beam system and s, is the

mass measured in that system, The wave disturbance in the plasma is

((uf-b()

=~
represented by ¢ . Thus ( k , _é_/ } form a four-vector. The

beam system is unprimed, while in the lab system, moving with a ve-

locity -V with respect to the beam, the quantities are primed. Thus

o= oy (W' - Vl<’)
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or w'= W& 4 V' because v=-V. K-3
e

In the beam system, w is given by /L of eq. 2 or

n,

w= [l = * (‘477“-377)“ K-4

We now wish the value of n, as measured in the lab system. Since n
forms part of a four-vector we have the following transformation equation,

where again the primed quantity is in the lab system,
W'=Y (h -+ VJ)

The current j is evidently zero in the beam system. Hence if »n=4,,

n'=¥hn, , and l:;y cq. 4
we 2 [4Tnle?A K-5
' e
and therefore eq. 3 is
w'= YR’ * ¢mwn'et % K-6
$3 n,

This is now identical with eq. 1 if the appropriate correspondences arec

. . ‘ 7,
made, including tp. = (‘”r_'l_“‘)‘ where #’ is measured in the
(19)

lab system as is evident from the article by Bludman et al.

Next we proceed to the case of very narrow beams, i.e., bk« |
(29)

(b = beam radius). As shown by Sturrock this modifies the plasma
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frequency given by eq. 2. For thin beams

W= YTmed yeu g Loy, o
’ n (L‘k ) A
K-7
= W, L2 9, = Q’L’ ((‘ T.8577 Euler’s cou’/.)

This is true non-relativistically and hence holds true for a relativistic
beam if «, is observed in a coordinate system moving with the beam.
In the lab system we observe a frequency /1 , which may be derived
from eq. 3-36. We set the number density of ions equal to zero, or
equivalently their mass infinite, in which case the first term on the

R.H.S. of eq. 3-36 is zero. Setting the temperature term equal to zero,

now gives
A= vk’ 2 (viger k™) K-8
T
if v «| - Alsowehaveset '. f' , and J’ is measured in the
!

lab frame. We now wish to make a transformation from the «w , Ak

system to the w ', k' system moving with velocity -V. We have

W' = }’( (WA V/:)
) K-9
S 4 (Q ' V'L)
using also eq. 7. Also
k' = ¥ (Jc 1 ""—(Lf-)
and K-10

ko= ¥ (k'- M)
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Substituting this value for k into eq. 9 gives

1 = ’—\JIV
Lo —k(va)r(lz { ;.)

or
wis _(@ev)k! = (@)K
S A 1L ] 1 QV
J‘A ('3 (3 cl
’ V / - “’ ,'. @y)
= Q k + Vi Vi ( (:I + Vl(l K-11
| 4+ Qv
o
= Q(I-_(K“J)LI 4 V/ll
le 22
. Vi’ + Qk’
NExy
. | . - V) s
using yr i | &= - ( c?
The expression for Q in eq. 7 may be written as
Q* = Ymhe? b*lk*q, = 4¢wm__# el iy
g . 2 h,c?
M K-12
= Y4 verg,

This y is measured in the beam system and is proportional to the den-
sity measured in the beam system. Calling this ), , then since by

€q. 5, h'= rn, , we have that y'= YV, . Since the condition for

the validity of eq. 8 is f;’j_ « | , the corre sponding condition in the
beam equation is v, 9gs & | . Hence by eq. 12, Q«¢, and eq. 1l be-
comes after substituting for Q in the numerator and neglecting Q in the

denominator,

L'z V' o+ 1'-“ (‘/V'C“Ir). J ! K-13
)4 .
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Identifying this ' with /) in eq. 8, we sec that the equations
are identical if
49, =9
First 9, must be transformed to the lab system. The only quantity
in ¢, which transforms is k . By eqs. 10 and 13, neglecting the v

's
term which is small

b =~ )’(}z' - vw) = K
c? '
Thus in lab quantities
g, = 1(@ r --() K-14
"('/J
while
4= 2 [,& T 1.12) K-15
1h
by cq. C-13,

These constants differ somewhat because one refers to a circular
gecometry, and the other to a lincar geometry, and also there is a factor
r that does not appear in eq. 15, This suggests that cq. 15 is in error,
apparently because the retardation terms were neglected in writing
eq. C-12. Thus since ¢q. 14 is valid only for small Y' , the factor

's
¢ which should appecar in eq. 15 is probably
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DEFINITIONS AND SYMBOLS

a) Roman Letter Quantity Symbols

A% = vector potential of the unperturbed beam, Ao( r,0, z, t)
A' = vector potential due to the perturbation, A'! (r, 6, z, t)
AB = the external betatron potential, defined by eq. A-4

B, = magnetic field at the equilibrium orbit

C = velocity of light

g, =Q(£MI_’%’ 412 ) for small [ ,[I/L}‘.»I,and 150 ; for]=0
write ] =,14. Its valueis =~ 5. For larger ] it is given by
eqs. C-19, C-12 and C-13.

E =8

ﬁz =gl+—'; . For ] =1, 2’-)- =13, also§°=g'. For more
accuracy sce eqs. C-19, C-12 and C-13,

g =g

k = 7—7;‘—7»—‘ , whe\re o T ﬁ - »}'-3—

k; = 2m , the magnitude of the wave vector when the disturbance is
of Sxe form e“k'2 - At

1 = integers, £1,2,3..... it gives the spatial dependence of a dis-
turbance through ¢ {8 ook

mg, =rest mass

m{ = rest mass of the positively or negatively charged particle

m = relativistic mass, equals rmg

n = field index, the exponent in B, = Bo(.;)n

N  =total number of particles in the beam of either specie
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P, = radial canonical momentum (secc Appendix I)
Pp = canonical angular momentum
Pz = axial canonical momentum

q = electric charge density

r = radial coordinate in a cylindrical lab coordinate system

ro = equilibrium orbit radius

R =r,
t = time measured in the lab system

v, = r, 90: » the average velocity of cither beam

z = axial coordinate in a cylindrical lab coordinate system

b) Greek Letter Quantity Symbols

1 . o . .
® = T - ";'; » 18 negative in the negative mass region
- ] A . . .
F = T.__.i.:- » the relativistic J° factor
C

I = -3 . N . . 1

-3 l_a_ - v I, » gives the deviation from - due to
)’5 4 [ « 4

the circular geometry

P

49, =8, - g, » a small positive quantity for[7/> 0.

A =range of P, values for which a pulse distribution function gives
non-zero values
Av,=T,A0,= ..'-}' (-'i‘—/_\.._‘) » a measure of the becam temperature
- s 's e F.

/33

which contributes to the stabilization of the negative mass instability

4
a

v= Lo (---———~) , + a measure of the beam temperature which is

43 N
effective for pure longitudinal oscillations

A R = width of the betatron well (sece Appendix I)
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€, = (1 -n) —%R— » for parabolic wells given by eq. A-4, a number
which is always less than one

@ = angular coordinate in a cylindrical lab coordinate system

é =-¢ 8. » the cyclotron frequency at the equilibrium orbit ro

. & e C

Y = N ef Budker's parameter, dimensionless measure
AR m_c? o '
of the lineal particle density ( V = 1 gives 17,000 amps if
v=c)

V=V

V= V m_

+ —-‘“‘

minor radius of the beam, as shown in Fig. 1
= electrostatic potential of the unperturbed beam, (p' (r, 6 , z, t)

4

f=

¢¢

p = potential due to the perturbation, Cﬂ' (r, 6 , z, t)

ﬁ' = the distribution function of the unperturbed beam,
Vir, 6, 2, Pyr Py + Py t)

W'= the distribution function of the perturbation,

W(r; 6,z Py» Py » Pz t)

c) Mathematical Symbols

~ implies proportional to
X implics approximately equal to. This notation follows the SUN
Commission's recommendations listed in Physics Today, 15, 19

(1962)

P implies principal value
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d) Dictionary

N.M.I. = negative mass instability

- Transition Energy= for strong focusing acceclerators, 1 - n is replaced

by kg in the expression for o , where kg > 1. The transition

enorgy occurs for such ¥ than « = 0
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Fig. . The physical model. Electrons rotate in the indicated sense.

L ¥lgo

Fig. 2. The vector potential well due to the external field AR and the
self-field A°. The lines of the self-field B® are drawn

schematically and encircle the torus. (see p 13)
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Fig, 3.

translorm, (see p 23)
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The line W in the complex {1 plance used for the Laplace
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Fig. 4. Plot of the two-stream N.M,I

+ equation, F = the first two terms

onthe R.H,S, of eq, 3-20. The figure is drawn for a stable

case and gives four real roots,

heam at one temperature h, =

Note that for a non-relativistic

h. . (see p 49)
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Fig. 5. Plot of the two stream longitudinal instability. F = the two
terms on the R.H.S. of eq. 3-28. Note that if the numerator
of the second term in this equation is negative, then the right

side of the above figure is inverted about the horizontal axis.

(see p 54)

2 ko«

4

1 1 L |
o I 2 3
2
Fig. 6. The ordinate is _?_l_ . Since §1= J2-, * 414, the concavity
e} 2

of the curve shows that §: >9, . (seep 79)
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Fig. 7. The complex [) plane used for the Nyquist diagram

(see p 83)

Im Z_

Fig. 8. Map of the curve C of Fig. 7 on the W plane for Maxwellian

distributions. (see p 83)
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Fig. 9. Map of the curve C of Fig. 7 for some multi-peaked

distribution function, (sce p 85)

Fig. 10. The complex V' plane used for integrations involving a

resonance shape distribution function. (sece p 88)
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